
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002 1327

Stochastic Analysis of the Filtered-X LMS Algorithm
in Systems With Nonlinear Secondary Paths
Márcio H. Costa, José Carlos M. Bermudez, Member, IEEE, and Neil J. Bershad, Fellow, IEEE

Abstract—This paper presents a statistical analysis of the fil-
tered-X LMS algorithm behavior when the secondary path (output
of the adaptive filter) includes a nonlinear element. This system is
of special interest for active acoustic noise and vibration control,
where a saturation nonlinearity models the nonlinear distortion in-
troduced by the power amplifiers and transducers. Deterministic
nonlinear recursions are derived for Gaussian inputs for the tran-
sient mean weight, mean square error, and cross-covariance matrix
of the adaptive weight vector at different times. The cross-covari-
ance results provide improved steady-state predictions (as com-
pared with previous results) for moderate to large step sizes. Monte
Carlo simulations show excellent agreement with the behavior pre-
dicted by the theoretical models. The analytical and simulation re-
sults show that a small nonlinearity can have a significant impact
on the adaptive filter behavior.

Index Terms—Adaptive filters, adaptive signal processing, least
mean square methods, transient analysis.

I. INTRODUCTION

A DAPTIVE algorithms are applicable to system identifi-
cation and modeling, noise and interference cancelling,

equalization, signal detection, and prediction [1], [2]. Most
adaptive system analyses neglect nonlinear effects and model
the unknown systems as linear with memory. In many im-
portant practical circumstances, a linear model simplifies
the mathematics and permits detailed system analysis. More
sophisticated models must be used when nonlinear effects
significantly impact actual system behavior [3]–[5]. Important
nonlinear effects occur in active noise control (ANC) and
active vibration control (AVC) systems, for example, [4]. ANC
and AVC systems include acoustical/mechanical paths. Signal
converters (A/D and D/A), power amplifiers, and transducers
(speakers or actuators) can nonlinearly transform digital elec-
trical signals into analog electrical or mechanical signals. This
nonlinear effect is caused by overdriving the electronics or the
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speakers/transducers in the secondary path1 [6], [7]. Thus, the
nonlinearities should be included in the mathematical model
for accurate analysis.

Bernhardet al. [8] briefly discussed such nonlinear effects
but presented no analysis. Costaet al. [9], [10] recently studied
the statistical behavior of the LMS algorithm for a memoryless
nonlinear secondary path. Small nonlinearities were shown to
significantly affect algorithm performance. These analytical re-
sults provide important insights of the effect of a nonlinear sec-
ondary path upon ANC and AVC system behavior. However,
they do not provide information about secondary path impulse
response effects.

This paper provides a stochastic analysis of the FXLMS al-
gorithm with a saturation nonlinearity as shown in Fig. 1. The
function is a zero-memory saturation nonlinearity.2 is
the secondary path linear filter andis its estimate. Usually,

is designed to duplicate. The mismatched case is analyzed
here since perfect estimation cannot be achieved in practice. A
degree of nonlinearity is defined that measures the impact of the
nonlinearity on the achievable mean square error (MSE). De-
terministic nonlinear recursions are derived for Gaussian inputs
and slow adaptation for the transient mean weight, mean square
error, and cross-covariance matrix of the adaptive weight vector
at different times. The analytical and simulation results show
that even a small nonlinearity can have a significant impact on
the adaptive filter behavior. Contrary to the case studied in [10],
the converged mean weight vector is not a scaled version of the
primary path response. The steady-state solution depends on the
nonlinearity , the secondary path impulse response, and
the secondary path impulse response estimate. The cross-co-
variance results provide improved steady-state predictions (as
compared with previous results) for moderate to large step sizes.
The models presented here generalize the linear case analyses
in [11]–[13]. The models and the results for the linear case cor-
respond to a degree of nonlinearity equal to zero. A wide variety
of Monte Carlo simulations show excellent agreement with the
theoretical predictions.

II. A NALYSIS—FXLMS ALGORITHM TRANSIENT BEHAVIOR

A. Problem Definition

Fig. 1 shows a block diagram for the FXLMS algorithm
[1] with a nonlinearity at the output of the adaptive filter. The

1Secondary path is the usual term for the path leading from the adaptive filter
output to the cancellation point [1].

2The modeling of nonlinear effects in amplifiers and tranducers is very com-
plex, and there is no unique model for all situations [6]–[8]. Static nonlinearities
have been used to model nonlinear effects in electronics and in transducers [3],
[5].

1053-587X/02$17.00 © 2002 IEEE
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Fig. 1. Block diagram of the nonlinear adaptive system.

notation used is as follows:
is the response of the unknown system;

is the adaptive filter weight
vector; is the secondary path response;

is the estimate of the secondary path
response; is the reference signal; is the filtered
reference signal;

is the observed input data vector;

is the filtered input data vector;
is the primary signal; is the measurement noise;
is the output of the adaptive filter; is the output of

the linear filter ; is the saturation nonlinearity; is
the nonlinearity output; and is the error signal.

In the following analysis, is assumed stationary, zero-
mean, and Gaussian with variance. The measurement noise

is stationary, white, zero-mean, Gaussian, with variance
and statistically independent of any other signal. The saturation
nonlinearity is modeled by the scaled error function

(1)

Note that and
sgn . Hence, by changing , can be varied

between a linear device and a hard limiter. The effects of very
large nonlinearities ( ) can be studied by scaling by
a constant such as , . models the saturation
type nonlinearity, which is of great practical interest.

The degree of nonlinearity for the system in Fig. 1 is de-
fined as

(2)

is a steady-state parameter that describes the power limitation
in due to the nonlinear distortion. The denominator of (2)
is the maximum nonlinear output power and is

. The numerator of (2) is the average
steady-state power of the cancelling signal in the linear case.3

3In the case, (1) is scaled byA=�, maxfy (n)g = (�=2)A , and (2) be-
comes

� =
�

2

E fy (n)gj

maxfy (n)g
=

1

A
E fy (n)g :

The adaptive weight update equation for the FXLMS algo-
rithm is [1]

(3)

where is the adaptation step size. The filtered input data vector
can be written as

(4)

The error signal is given by

(5)

Substituting (4) and (5) in (3) yields

(6)

B. Statistical Assumptions

Equations (4)–(6) clearly show that the statistical analysis
of the algorithm behavior involves moments of products of the
present and past values of data and weight vectors. Since the
joint probability density function of the weights and data is not
known, some statistical approximations must be made to pro-
ceed with the analysis. The following assumptions are used for
sufficiently small :

A1)

A2)

where , and
is the correlation matrix of

time-lagged input vectors.
A sufficient condition for these assumptions to hold is that

weight and data vectors are statistically independent. Clearly,
this is not true because of the different time indices onand
[i.e., future values of , say , depend on past values of,
say, , for ]. A1 and A2 imply only that the statistical
dependence of weight and data vectors is not as significant in
determining the algorithm behavior as the dependence between
lagged input vectors. Assumptions A1 and A2 are supported by
extensive numerical simulations and by previous results [10],
[11]. Some sample simulations are given in the examples at the
end of the paper.
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C. Mean Weight Behavior

The expected value of (6) will be evaluated in two steps. First,
the expectation is taken conditioned on, leading to

(7)

The first expectation in (7) is evaluated using A2. The second
expectation in (7) is zero since is zero-mean and statis-
tically independent of [and, consequently, of ].
The third expectation is of the form , where
and the components of vector are zero-mean Gaussian
variates. This expectation can be determined using the results
in [14, Eq. A19] with , , ,

, ,

, and

. Thus

(8)

Theexpectedvalueof (8)canonlybeapproximatedsincethe joint
probability density function of and is not known. A
good approximation is obtained by noticing that

can be assumed weakly correlated to
for large values of and for all , , and . This is equivalent to
applying the averaging principle proposed in [15] as the value
of the summation tends to be slowly varying when compared
with for large. Approximating and

by their expected values separately
in the numerator and denominator of (8)4 and using

tr (9)

where tr is the trace of the matrix

tr

(10)

4This approximation has also been successfully applied in [10].

where

and (11)

Note that as , (10) reduces to the mean weight equa-
tion derived in [11, Eq. 16] for the linear case. In a previous
publication [16],
was assumed. This simplified model accurately predicts the al-
gorithm behavior for small . For larger , the simplified model
is not accurate in steady state. Hence, an approximate recursive
expression for will be derived in Appendix A.

D. Mean Square Error (MSE) Behavior

Squaring (5) and taking the conditional expectation given
yields

(12)

Using A2, the first expectation equals . The second and
fifth expectations are zero since is i.i.d. and zero mean.
The fourth expectation is given by .

Following the same steps used to derive the third term in the
right-hand part of (10) (with and ), the
third expectation of (12) is

(13)

The last expectation in (12) has the form , where
is zero-mean Gaussian. Using the results in [17, Eq. 40], with

, , and
, yields

(14)
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Using the above results in (12) yields

(15)

Again, approximating and
by their expected values, (15) leads to an expression for the MSE

tr

tr

tr

(16)

Equation (16) requires , as does (10). The MSE for
the linear case [12, Eq. (11)] can be obtained by letting
in (16).

E. Weight Correlation Matrix

An approximate recursion for
is derived in Appendix A [Eq. (42)]. The expectation of (42) re-
quires approximations because neither the joint density function
of the weight vector at two different times nor the contributions
of higher moments are known. An approximate expression for
the expected value of (42) as a function of first and second mo-
ments of the weight vector components is given by

tr

tr

tr

tr

tr
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tr

(17)

where was defined after (42). The expected values of terms
and in (42) include third-order moments of the weights.

Each of these moments were approximated by a product of
first- and second-order moments. This approximation preserves
the mean and fluctuation behaviors of while keeping the
mathematical problem tractable [10, Eq. (29)].

An expression for can be ob-
tained from the evaluation of , where
and and the components of and are zero-mean jointly
Gaussian variates. After laborious calculations, such an expres-
sion follows using the same approach as in [17, Eq. A6]. How-
ever, only a special case is needed to determine the algorithm
behavior, as will be shown in Section II-F. Thus, the complete
expression is not presented here to conserve space.

F. Recursive Generation of the Weight Correlation Matrix

The time delays of the weight vectors in (17) are functions of
several parameters ( and ). Thus, it is not clear how
to determine recursively from previous available

results. The following properties of the matrices for
any , , and are instrumental:

(18)

Using (18), it is possible to write

.
(19)

Thus, can be obtained for any and from
present and previous values of , .
Recursive expressions are now derived for and

, .5

For , the term in (17)
becomes [17]

(20)

where , and
. Using the results in [17, Eq. A13], it can

be seen in (21), shown on the bottom of the page, where
.

Setting in (17) and using (19) and (21) yields the
recursion shown in (22), shown at the bottom of the next page,
for .

The final step is the derivation of a recursion for ,
. Post-multiplying a delayed version of (6) by

yields

(23)

5K (n) cannot be obtained by makingk = 0 in the recursive expression
for K (n). This would requireK (n) for b < 0. Thus,K (n) must be
obtained directly from (17).

tr

tr

tr tr

(21)
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Taking the expected value of (23) with the same assumptions as
before and using the notation for yields

tr

(24)

which yields for

tr

(25)

For , (22) and (25) constitute a set of
recursions that can be used to determine the weight vector cor-

relation matrices required for the recursive evaluation
of mean weight behavior [see (10)] and the MSE behavior [see
(16)].

The complete analytical model is composed of (10), (16),
(19), (22), and (25). Appendix B presents a step-by-step
procedure to initialize the variables and to recursively evaluate

and using the model. Since its implementation
is quite laborious, a Matlab code is also available at the authors’
web site for download.6

III. STEADY-STATE ALGORITHM BEHAVIOR

This section studies the limiting behavior of the converged
FXLMS algorithm. The determination of the steady-state algo-
rithm behavior from (10), (16), (22), and (25) requires numerical
methods. However, using the assumption of very small weight
fluctuations (compared to their mean values), simple analytical
expressions that are useful for evaluation and design purposes
can be determined. Thus, is assumed for
the steady-state analysis.

6http://www.eel.ufsc.br/~bermudez. The code has not been optimized for
speed but has been tested in numerous examples for reliability and correspon-
dence to the analytical model.

tr

tr

tr

tr

tr

tr tr

(22)
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(a) (b)

(c)

Fig. 2. Example 1:EfW (n)g for � = 0:0001 [curve (I)], 0.3 [curve (II)], and 0.5 [curve (III)]. (a)–(c) Different values of�. Simulation—ragged curves.
Theory—smooth curves. Plots averaged over 1000 runs. (a)Efw (n)g for � = � =5 = 0:04. (b)Efw (n)g for � = � =10 = 0:02. (c)Efw (n)g
for � = � =100 = 0:002.

A. Steady-State Mean Weight Behavior

Define

(26)

(27)

and assume that and are positive definite and that the
algorithm converges as . Replacing and

with in (10) yields,
after simple algebraic manipulation

(28)

where is the autocorrelation matrix of the reference signal
filtered by . Thus, is positive definite for positive

definite,7 and . With these considerations, it
is clear from (28) that , where .

7Note that~R needs to be semi-definite positive for� > 0.

Substituting for in (28) and solving for
yields

(29)

where is given by

(30)

and corresponds to the system’s degree of nonlinearity defined
in (2). This can be verified as follows. It is easy to show that for
the converged linear case8

(31)

where is obtained from (29) for
( , which is the linear case).

Note that the steady-state mean weight vector is not a scaled
version of , as is true for the LMS algorithm with a nonlin-
earity (equivalent to in this case) [10]. As expected,

8After convergence,W (n) = W and the order ofS andW can be ex-
changed.
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Example 1: Left column: MSE for� = 0:0001 [curve (I)], 0.3 [curve (II)], and 0.5 [curve (III)]. Simulation—ragged curves. Theory—smooth curves.
Right column: Verification ofEfW (n � i)X(n � i)X (n � j)W (n � j)g � EfW (n � i)R W (n � j)g for � = 0:0001, 0.1, and 0.5. Ragged
curves: Actual value. Smooth curves: Approximation. All plots averaged over 1000 runs. (a) MSE for� = � =5 = 0:04. (b)� = � =5 = 0:04. i = 0,
j = 1. (c) MSE for� = � =10 = 0:02. (d)� = � =10 = 0:02. i = 0, j = 0. (e) MSE for� = � =100 = 0:002. (f) � = � =10 = 0:02.
i = 0, j = 2.

the attainable cancellation level depends on the degree of nonlin-
earity, the secondary path response, and the quality of its esti-
mate . These effects cannot be reduced by using a smaller. As

(toward the linear case), , and (29) reduces to
the steady-state mean weight vector for the linear case [11, Eqs.

(10) and (18)]. On the other hand, is unbounded as
, and (29) has no stationary points for . From (2),
sets a power threshold above which the adaptive branch

cannot cancel the desired signal . Hence, the adaptive filter
gain is never sufficient to overcome the nonlinear saturation.
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(a) (b)

(c)

Fig. 4. Example 2:EfW (n)g for � = 0:0001 [curve (I)], 0.1 [curve (II)], and 0.5 [curve (III)]. (a)–(c) Different values of�. Simulation—ragged curves.
Theory—smooth curves. (a)Efw (n)g for � = � =5 = 0:01. (b) Efw (n)g for � = � =10 = 0:005. (c)Efw (n)g for � = � =100 =
0:0005.

B. Steady-State MSE

An approximate expression for the steady-state MSE be-
havior can be determined by replacing with the steady-
state mean weight vector expression (29) and using the def-
initions of , , and in (16). After simple algebraic
manipulations

(32)

It is easy to verify that for and , (32) tends to [11,
Eq. (11)]

(33)

which is the expression for the minimum MSE in the linear case.

IV. SIMULATION RESULTS

This section presents simulation results in support of the the-
oretical models. Representative plots have been selected from a
large number of results.

A. Example 1

Consider ,
, white with variance , measurement

noise with , and perfect secondary path esti-
mation with .
Simulations are presented for three step sizes (normalized
with respect to the linear FXLMS stability limit). The stability
limit has been determined by simulation. Step
sizes , and
have been used to evaluate the models for large, moderate,
and small . In addition, , 0.3, and 0.5 have been
selected to illustrate the model accuracy for small, moderate,
and large degrees of nonlinearity. Fig. 2(a)–(c) compare the
simulated mean weight behavior with the analytical predictions
using (10), (19), (22), and (25). Each plot presents the results
for , 0.3, and 0.5 and a single averaged over
1000 realizations. The vector components were selected at
random. The remaining components have similar behavior. The
analytical model is accurate even for relatively large step sizes.
The steady-state mean weight behavior, which is predicted by
(29), is very accurate, even for the largein Fig. 2(a). The
predicted steady-state values for by (29) are 0.2614,
0.3124, and 0.3697. Note that the weight fluctuations increase
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Example 2: Left column: MSE for� = 0:0001 [curve (I)], 0.1 [curve (II)], and 0.5 [curve (III)]. Simulation—ragged curves. Theory—smooth curves.
Right column: Verification ofEfW (n � i)X(n � i)X (n � j)W (n � j)g � EfW (n � i)R W (n � j)g for � = 0:0001 [curve (I)], 0.1 [curve
(II)], and 0.5 [curve (III)]. Ragged curves: Actual value. Smooth curves: Approximation. All plots averaged over 1000 runs. (a) MSE for� = � =5 = 0:01.
(b) � = � =5 = 0:01. i = 0, j = 0. (c) MSE for� = � =10 = 0:005. (d)� = � =5 = 0:01. i = 0, j = 2. (e) MSE for� = � =100 =
0:0005. (f) � = � =5 = 0:01. i = 0, j = 4.

with . This increase is probably due to saturation, which
clips the adaptive filter output for larger . Clipping in turn
increases the error signal and the weight update.

Fig. 3(a), (c), and (e) show the simulated MSE and the the-
oretical MSE using (16), (10), (19), (22), and (25). Each figure

shows curves for , 0.3, and 0.5. Plots are shown
for different step sizes. All plots were obtained by averaging
1000 runs. The analytical model and the simulations are in close
agreement in all cases, even for relatively large . The
steady-state MSE [predicted by the closed form in (32)] are
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Example 3. Left column:EfW (n)g for � = 0:0001 [curve (I)], 0.3 [curve (II)], and 0.5 [curve (III)]. Right column: MSE for� = 0:0001 [curve
(I)], 0.3 [curve (II)], and 0.5 [curve (III)]. Simulation—ragged curves. Theory—smooth curves. All plots averaged over 1000 runs. (a)Efw (n)g for � =
� =5 = 0:012. (b) MSE for� = � =5 = 0:012. (c)Efw (n)g for � = � =10 = 0:006. (d) MSE for� = � =10 = 0:006. (e)Efw (n)g for
� = � =100 = 0:0006. (f) MSE for � = � =100 = 0:0006.

14.34 dB, 12.85 dB, and 10.85 dB. These values are accu-
rate only for small [Fig. 3(e)] since they do not account for the
weight fluctuations. The recursive model should be run to accu-
rately predict the steady-state behavior for moderate and large

. Fig. 3(b), (d), and (f) verify the accuracy of assumption A1
for different , , , and .

B. Example 2

This example repeats Example 1 for a longer impulse
response and for an imperfect estimate of the secondary
path. Consider

, ,
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, ,
, ,

white with and . The stability limit
was determined by simulation. The parameters

were , , , and
, 0.1, and 0.5.

Figs. 4 and 5 verify the analytical model using recursions
(10), (16), (19), (22), and (25). The right column of Fig. 5 vali-
dates assumption A1 for different delays and . Fig. 5(a)
and (c) suggest that the model can deviate from the simulation
for large step sizes and very small degrees of nonlinearity. This
mismatch is probably due to some of the stochastic approxima-
tions being based on slow algorithm learning. Fig. 5(e) shows
that the mismatch is minimal for small used in most prac-
tical applications (see [18] for instance). The model is accurate
for the initial transient phase (cancellation to30 dB, compat-
ible with most practical applications) and in steady-state, even
for large . The excess MSE (due to the nonlinearity) increases
as the system deviates from the linear case. Then, the inaccu-
racies of the analytical model can be neglected even for large
step sizes [see curves (II) and (III) in Fig. 5(a), (c), and (e)]. The
significant impact of the nonlinearity on the cancellation level
(steady-state MSE) is illustrated by this example. Clearly, the
nonlinear model is required to accurately predict this cancela-
tion level.

C. Example 3

This example verifies the model accuracy for correlated
inputs. is an autoregressive process with that
is obtained by passing a white noise with variance

through the filter with attenuation given by
. The eigenvalue spread of

is equal to 39.82 [2]. ,
, (imperfect

secondary path estimation). (experimentally
obtained for the linear case). The parameters used were
again , , , and

, 0.3, and 0.5. Fig. 6 shows the theoretical and
simulated results. Fig. 6(a), (c), and (e) compare the simula-
tions and the mean weight behavior predicted by the model.
Fig. 6(b), (d), and (f) show the results for the MSE. Note that
the model accurately predicts the simulation behavior.

V. CONCLUSION

This paper has presented a statistical analysis of the filtered-X
LMS (FXLMS) algorithm with a nonlinear secondary path. This
structure can model nonlinear effects in active noise and active
vibration control systems when transducers are driven by large
amplitude signals. Deterministic nonlinear recursions were de-
rived for Gaussian inputs for the transient mean weight, mean
square error, and cross-covariance matrix of the adaptive weight
vector at different times. The new results generalize previous
results obtained for linear secondary paths. The cross-covari-
ance results provide improved steady-state predictions (as com-
pared with previous results) for moderate to large step sizes.

Closed-form expressions have been derived for small step sizes
for the steady-state mean weight and MSE. Monte Carlo simu-
lations displayed excellent agreement with the theoretical pre-
dictions for both small and large step sizes. This agreement pro-
vides strong support for the approximations used to derive the
theoretical model.

APPENDIX A
DERIVATION OF

Multiplying delayed versions of (6) and taking the expected
value conditioned in yields (34), shown at the bottom of the
next page.

The expected values in (34) are now determined.
Expression 1:

(35)

Expression 2:Assuming statistically independent
of ,

(36)

Expression 3:The delayed version of the expression has al-
ready been evaluated for (8).

Expression 4:Assuming statistically independent
of ,

(37)

Expression 5:

(38)
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Expression 6:Using the moment-factoring theorem for
Gaussian variates [2], it can be easily shown that

(39)

(34)
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(40)

Expression 7:Using the same approach used to derive [17,
Eq. A6] and [10, Eq. 61], after laborious calculations, we have
(40), shown at the top of the page.

Expression 8:

(41)

Expression 9:An expression for this expected value can be
derived using the same approaches used to derive [17, Eq. A13]
and [10, Eq. 69]. However, this involved expression is not nec-
essary for the purposes of this paper, as is explained in the main
text. Thus, this term will be represented by the short functional
notation

Combining all terms of (34), we have (42), shown on the next
page, where , and

(43)

APPENDIX B
IMPLEMENTATION OF THE ANALYTICAL MODEL

1. Initialization:
1.1) Let .
1.2) Determine for ,

, and .
1.3) Make

and

2. Iterations:
2.1) Evaluate using (10), (19), and (22).
2.2) Evaluate for using (10), (19),

and (25).
2.3) Evaluate using (10) and (19).
2.4) Evaluate using (10), (16), and (19).
2.5) Return to step 2.1).
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(42)
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