IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 6, JUNE 2002 1327

Stochastic Analysis of the Filtered-X LMS Algorithm
In Systems With Nonlinear Secondary Paths

Marcio H. Costa, José Carlos M. Bermudbfember, IEEEand Neil J. Bershadrellow, IEEE

Abstract—This paper presents a statistical analysis of the fil- speakers/transducers in the secondary!pgih [7]. Thus, the

tered-X LMS algorithm behavior when the secondary path (output  nonlinearities should be included in the mathematical model
of the adaptive filter) includes a nonlinear element. This system is for accurate analysis

of special interest for active acoustic noise and vibration control, hard | briefly di d h i ff
where a saturation nonlinearity models the nonlinear distortion in- Bernhardet al. [8] briefly discussed such nonlinear effects

troduced by the power amplifiers and transducers. Deterministic but presented no analysis. Costaal.[9], [10] recently studied
nonlinear recursions are derived for Gaussian inputs for the tran-  the statistical behavior of the LMS algorithm for a memoryless
sient mean weight, mean square error, and cross-covariance matrix nonlinear secondary path. Small nonlinearities were shown to

of the adaptive weight vector at different times. The cross-covari- o hiicantly affect algorithm performance. These analytical re-
ance results provide improved steady-state predictions (as com-

pared with previous results) for moderate to large step sizes. Monte SUItS provide important insights of the effect of a nonlinear sec-

Carlo simulations show excellent agreement with the behavior pre- ondary path upon ANC and AVC system behavior. However,

dicted by the theoretical models. The analytical and simulation re- they do not provide information about secondary path impulse

sults show that a small nonlinearity can have a significant impact response effects.

on the adaptive filter behavior. This paper provides a stochastic analysis of the FXLMS al-
Index Terms—Adaptive filters, adaptive signal processing, least gorithm with a saturation nonlinearity as shown in Fig. 1. The

mean square methods, transient analysis. function g(y) is a zero-memory saturation nonlineafitys is
the secondary path linear filter artlis its estimate. Usually,
I. INTRODUCTION S is designed to duplicat€. The mismatched case is analyzed

DAPTIVE algorithms are applicable to system identiﬁ_here since per_fect e_:st|_mathn cannot be achieved in practice. A
degree of nonlinearity is defined that measures the impact of the

cation and modeling, noise and interference cancellin . . .
equalization, signal detection, and prediction [1], [2]. Mo %bnlmeanty on the achievable mean square error (MSE). De-

. . grmmlsnc nonlinear recursions are derived for Gaussian inputs
adaptive system analyses neglect nonlinear effects and maodel . . .
) : ._and slow adaptation for the transient mean weight, mean square
the unknown systems as linear with memory. In many i

sophisticated models must be used when nonlinear effeg{s 5qaptive filter behavior. Contrary to the case studied in [10],
significantly impact actual system behavior [3]-[5]. Important,e converged mean weight vector is not a scaled version of the
nonlinear effects occur in active noise control (ANC) angrimary path response. The steady-state solution depends on the
active vibration control (AVC) systems, for example, [4]. ANQwonIinearityg(-), the secondary path impulse resporssend
and AVC SyStemS include acoustical/mechanical pathS. Slglﬂ@é Secondary path impu|se response estirﬁa@qe Cross-co-
converters (A/D and D/A), power amplifiers, and transduce{griance results provide improved steady-state predictions (as
(speakers or actuators) can nonlinearly transform digital elegsmpared with previous results) for moderate to large step sizes.
trical signals into analog electrical or mechanical signals. Thithe models presented here generalize the linear case analyses
nonlinear effect is caused by overdriving the electronics or tive[11]-[13]. The models and the results for the linear case cor-
respond to a degree of nonlinearity equal to zero. A wide variety
of Monte Carlo simulations show excellent agreement with the

theoretical predictions.
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z(n) The adaptive weight update equation for the FXLMS algo-
<) a o ;i\ o) rithm is [1]
(o)
W 5 W(n+1) = W(n) + pe(n)Xy(n) 3)

wherey is the adaptation step size. The filtered input data vector

X(n) can be written as
»  W(n) S a(ys) o1
y(n) V() yg (M ~ .
8 ° Xp(n)= Y 8;X(n—7j). 4
=0
@) o
o [ LMS The error signal is given by

e(n) =d(n) + 2(n) — y4(n)
=W X(n) + 2(n)

M-1
> siWh(n—i)X(n— z‘)] . (5)
=0

Fig. 1. Block diagram of the nonlinear adaptive system.

notation used is as followsWW°® = [w§w{ - - w% )%
is the response of the unknown syster/(n) =
[wo(n) wi(n) --- wyx_1(n)]¥ is the adaptive filter weight
vector;S = [sgs; ---spy—1]7 is the secondary path response;
S = [80 81 "'31\”471]T is the estimate of the secondary path -
response;u(n) is the reference signal;s(n) is the filtered W(n+1) =W(n) +p W? X(n) + 2(n)
reference signalX (n) = [z(n) x(n—1) --- 2(n—N+1)]* =
[zo(n) z1(n) ---zy_1(n)]F is the observed input data vector;
Xp(n) = [epn)ap(n — 1) ap(n — N + DT = 9
(@4, (n)xy (n) - zsy_ ()] is the filtered input data vector;
d(n) is the primary signalz(n) is the measurement noise; - .
ygng is the output of the ada(pti)ve filtegis (n) is the output of B. Statistical Assumptions
the linear filterS; g(y.) is the saturation nonlinearity, (n) is Equations (4)—(6) clearly show that the statistical analysis
the nonlinearity output; ane(») is the error signal. of the algorithm behavior involves moments of products of the
In the following analysisz(n) is assumed stationary, zeropresent and past values of data and weight vectors. Since the
mean, and Gaussian with variangg The measurement noisejoint probability density function of the weights and data is not
z(n) is stationary, white, zero-mean, Gaussian, with variarfice known, some statistical approximations must be made to pro-
and statistically independent of any other signal. The saturatieeed with the analysis. The following assumptions are used for

-9

Substituting (4) and (5) in (3) yields

M-—1

Z ssWTh(n —)X(n —1)

}Xf(”)- (6)

nonlinearity is modeled by the scaled error function sufficiently small .
y Al)
— —(;:2/20'2) d 1
c Z. . . . .
9w) /0 D BWT (o — )X (0 — )X T (0 — )W (n — i)}
Note thatlim,2_...[g(y)] = w and lim,2_[g(y)] = ~ B{WT(n — )R; ;W (n — j)}

o+/7/2 sgny). Hence, by changing?, ¢(y) can be varied A2)
between a linear device and a hard limiter. The effects of very -
large nonlinearities{ — 0) can be studied by scalingy) by E{Xs(n) X" (n)[¥}

a constant such a4/o, A € R*. g(y) models the saturation -1 f—1
type nonlinearity, which is of great practical interest. =F Z 5;X(n—HXTM)|V 3 ~ Z 5;R_;
The degree of nonlinearity? for the system in Fig. 1 is de- j=0 j=0
fined as
! where¥ = {W(n), W(n — 1), ..., W(n — M + 1)}, and
5 T E {Zlg(”)H e 1 ) Ry_¢ = E{X(n — 0)X*(n — k)} is the correlation matrix of
T=35 max{yg(n)} =2 E{y;(n)} St @) time-lagged input vectors.

A sufficient condition for these assumptions to hold is that
n? is a steady-state parameter that describes the power limitatiegight and data vectors are statistically independent. Clearly,
in y,(n) due to the nonlinear distortion. The denominator of (Zhis is not true because of the different time indice$i6and X

is the maximum nonlinear output power andiisx{y2(n)} = [i.e., future values ofV’, sayW (¢), depend on past values &,
(m/2)0? = lim,_ o [g(y)]- The numerator of (2) is the averagesay, X (+), for » < ¢]. A1 and A2 imply only that the statistical
steady-state power of the cancelling signal in the linear tasedependence of weight and data vectors is not as significant in
determining the algorithm behavior as the dependence between
lagged input vectors. Assumptions A1 and A2 are supported by
extensive numerical simulations and by previous results [10],
[11]. Some sample simulations are given in the examples at the
end of the paper.

3In the case, (1) is scaled by/c, max{y2(n)} = (7/2)A?, and (2) be-
comes

7 EA{yZ(m)} 5

?= _ g = i X 2/,
= 2 max{yg(n)} 4z E {y;(n)}

n—oo
{72‘>00
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C. Mean Weight Behavior where
The expected value of (6) will be evaluated in two steps. First, K; j(n) =E{W(n—i)WT(n - j)}

the expectation is taken conditioned ¥nleading to i>0 and j>0. (11)
EAW(n+ 1)|T} - Note that agr? — oo, (10) reduces to the mean weight equa-
=W(n) + pE {Xp(n)X* (n)| ¥} W° tion derived in [11, Eq. 16] for the linear case. In a previous
+ pE {2(n)X;(n)| ¥} publication [16], K; ;j(n) ~ E{W(n — i)}E{WT(n — j)}
M-1 was assumed. This simplified model accurately predicts the al-
—pE {9 Z s;Wh(n —9)X(n —1) Xf(n)l\lf} . gorithm behavior for smalk. For larger, the simplified model
i=0 is not accurate in steady state. Hence, an approximate recursive
(7)  expression fol; ;(n) will be derived in Appendix A.
The first expectation in (7) is evaluated using A2. The second )
expectation in (7) is zero sincgn) is zero-mean and statis-D- Mean Square Error (MSE) Behavior
tically independent ofX (n) [and, consequently, i ¢(n)]. Squaring (5) and taking the conditional expectation gien
The third expectation is of the formv{g(y1)Y>}, wherey, vyields
and the components of vectdr, are zero-mean Gaussian
variates. This expectation can be determined using the resdite ()|V}

in [14, Eq. A19] withd, = 0, ¢ = 1/0, 0, = 0, WIX = =W E{X(0)XT(n)[O}W° + 2W°" E{z(n)X(n)|T}
St siWE(n — i) X(n — 4), X = Xg(n), RxW = i} rM-1 7
SM S s8R W(n — i), and 02 = M —2W° E{g > siWH(n —i)X(n —i)| X(n) \P}
S Mt sisiW T (n — §)Ri_jW(n — i). Thus , - =0 -
E{W(n+1)[¥} +E{z(n) ¥}
M1 rM—1 -
= W(n)+p Z §;R_,W° - 2F {z(n)g Z siWhn — )X (n —1i) \If}
= L 2=0 |
7=0 1 M—1
s M—1 M—1 + L& {92 [Z siWH(n —)X(n—1) ‘I/} . (12)
0—12 Z Z SjSiWT(TL — J)RZ_JW(TL — L) +1 =0
o Using A2, the first expectation equal®. The second and
M-L1 M-1 fifth expectations are zero sincgn) is i.i.d. and zero mean.
Y sisiRiW(n—i). (8) The fourth expectation is given b§{2?(n)} = o2.
=0 j=0 Following the same steps used to derive the third term in the

The expected value of (8) can only be approximated since the jaiigtht-hand part of (10) (wittf, = 1 and3; = 0, j # 0), the
probability density function oV (n) and¥ () is notknown. A  third expectation of (12) is

good approximation is obtained by noticing thaf ;" ws (n — M1

Jwr(n — i) can be assumed weakly correlateddgn — ) E {g Z s;WT(n — )X (n —i) X(n)mj}

for large values ofV and for allz, j, and¢. This is equivalent to o

applying the averaging principle proposed in [15] as the value 1

of the summation tends to be slowly varying when compared — VARV

with we(n — ) for N large. Approximating’(n — ¢) and LY Y Wl (n— )R Wn—i)+1
W (n — j)R,—;W(n — 4) by their expected values separately j=0 i=0

in the numerator and denominator of{&nd using M-1

E{WT(n - j)Ri_;W(n —i)} $ D sRW(n =), (13)

1=0
=tr[R,_,E{W(n—-—OWT(n—j 9
FRiE{W(n—9)Whn -5} (9 The last expectation in (12) has the fofii{g>(y)}, wherey

where tf] is the trace of the matrix is zero-mean Gaussian. Using the results in [17, Eq. 40], with
N1 ap=by(n)=1,HY =M1 ;WP (n — )X (n — i), and
E{W(n+ 1)} ~E{W(n)}+p Y 3R ;W° b= M 55 W T (n — §)Ri ;W (n — i), yields
J=0 1 M—1
-1 —— E{92 Z siWT(n—i)X(n—i) |\I/}
~ = i=0
> > 2 ssilrRi K j(n)]+1 M—1M-1
=0 =0 > 2 ssiW(n—j)Rio;W(n—1d)
M—1 M—1 — 2gin1 j=0 =0
. 5i8;Ri_;E{W(n—14)}  (10) N M_1M-1 , . :
; ;J S > 2 sisiWT(n—j)Ri_;W(n—i)+o?

7=0 =0
4This approximation has also been successfully applied in [10]. (14)
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Using the above results in (12) yields M-1M-1
DD 3p3qB%J+ﬁ(”)Bglq
E{c*(n)|V} _ p=0 ¢=0
1ol o 2 M-1M-1 ‘
=W RoW" + 0 9 % 2 20 Sspsqll[Ry—pKgp(n — j)]+1
— p=0 ¢=0
M-1M-1
L3 Y sisWT(n— )R jW(n—i)+1 Kr—1K1—1
j=0 i=o F 20260 — ) D> > 88gRiivgp
- M-1 p=0 g=0
-We Z s R;W(n — i) 4+ o?sin™* -1 -1
; a o ol a
i=0 +107 > SR WOWT >8R,
M-1M-1 - p=0 7=0
s W —DR;_ ;W (n—1
T, & ssW =R W(n=i) i
M—1M—1 : + 8,Rj_i_,W°W° 8,Rj_iy
> Y ssWTn—j)Ri W (n—i)+o? ; R 223 ce
j=0 i=0
(15) . M—-1M-1
+ W R;_;W° 8p8gRy_itq
Again, approximatingV (n) andW7 (n — j)R;_ ;W (n — %) ’ ];) qz_:_o PRty
by their expected values, (15) leads to an expression for the MSE
2
n
! 5)( ) =E{c*(n)} " M-1M-1 : 8/2
n)= cn — _
- o2 | % SpStt[Ry_, Ky p(n — )] +1
:WO ROWO +OZ2 <o’2 pZ::O qz::o rP=q q—pirq,p
— 2 M—1M—1M-1M-1M-1
M—-1M-1 . o a AV
LQ Z Z SjSitr[Ri,jKij(TL)]—i—]_ Z Z Z Z Z SrSkSlSquE{W (7’L ¢ 7)}
77 =0 i=o : p=0 ¢=0 k=0 1=0 r=0
M—1 “Rj_i oy WOR Ky p(n — 1) Rj_itg—p
WS S RE{W(n— i)} +o0%sin ! )
=0 —+ H
3/2
M—-1M-1 9 1 M-1M-1 )
Z Z Sjsitr[Ri_jKiJ(TL)] g o2 ZO ZO Spsqtr[R(I—Pqup(n _j)] +1
j=0 i=0 p=b =
O et [EREY;
st K, ;(n)] + o M—-1M-1M-1M-1M-1
j=0 i=0 . Z Z Z Z Z s,,sk§lsp§qE{WT(n—‘7'—7’)}
Equation (16) require&; ;(n), as does (10). The MSE for p=0 ¢=0 k=0 (=0 r=0
Fhe linear case [12, Eq. (11)] can be obtained by lettihg- oo Ry ,WRE ,  _ K,i(n—j)RE_,
in (16).
u?
E. Weight Correlation Matrix - ————
An approximate recursion faE{W (n — ¢)W 7T (n — 4)|¥} LY Y spst[Ry pKgp(n — )]+ 1
is derived in Appendix A [Eq. (42)]. The expectation of (42) re- p=0 7=0
guires approximations because neither the joint density function M—1M—1M—1
of the weight vector at two different times nor the contributions . Z Z Z 5,8, E{WT (n —i—r)}
of higher moments are known. An approximate expression for p=0 g=0 r=0
the expected value of (42) as a function of firstand second mo- .~ prop
ments of the weight vector components is given by e Joiamp
M—-1M-1
Kij(n+1) . + 30T sp80By (E{W(n —i— p) W RY
=K, ;(n) + pE{W(n —)}w° RY p=0 g=0
+ NR'%WOE{WT(H -} M—1M—1K-1
Mo181 + Z Z Z SpSg5. Ry W°
o D SpSelty_ Kigp j(n) p=0 ¢=0 r=0
_ p=0 ¢=0
M-1M-1 .
% 2 2o Spsql[Ry—pKqp(n — )] +1 CE{WT(n =i = PR ivgp

p=0 ¢=0
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_ [
M—1M-1
= 20 20 $pSqll[Ry—pHqp(n — 5)] + 1
p=0 ¢=

M—-1M-1M-1

Z Z Z 58,8 E{WT (n —

p=0 g=0 r=0

o pT
R WOR gy

J=r}

M-1M-1

+ 3 5,8, RWOE{W  (n — j - p)}RL

p=0 ¢=0

M-1M-1M-1

+ 33 s R,

p=0 ¢=0 »=0

E{W(n—j—p)}W° R

111

+ i’ E {Q (5, S, Ry_¢, n, i, 1)} (17)

whereR; was defined after (42). The expected values of ternie seen in (21), shown on the bottom of the page, where
(A) and(B) in (42) include third-order moments of the weightsz .

1331

results. The following properties of the matric&S ,(n) for
anya, b, andA € 7 are instrumental:

Kou(n) = E{W(n — a)WT(n —b)}
= [E{(W(n - )W (n—a)}]" = KL, (n) 18)
Ka_AJ,_A(TL - A) = E{W(TL —A—a+ A)
WHn—A—-b+A)} = K, u(n).
Using (18), it is possible to write
Ko p_o(n —a), b>a
K, (n) =< Koo(n —a), b=a
Kobo(n—b) =K, ,(n—b), b<a.
(19)

Thus,K,, ,(n) can be obtained for any > 0 andb > 0 from
present and previous values B , 0 < k < max{M, MY,
Recursive expressions are now derived fi o(n) and
Ko n(n), k #05

For: = 7 = 0, the termE{Q(S, S Ry_¢, m,
becomes [17]

E{Qo,o(& S, Ry, n)}:E {E{¢’(w)Y2YS [¥}} (20)

where y; = M lsiWT(n — B)X(n — k), and
Y> = Xs(n). Using the results in [17, Eq. A13], it can

6, )} in (17)

N1 —M—1 . ~
=20 Z—o 53, R;_;.

Each of these moments were approximated by a product OfSettmgL =3j=0in(17) and using (19) and (21) yields the

first- and second-order moments. This approximation preseryegursion shown in (22), shown at the bottom of the next page,

the mean and fluctuation behaviorsléf(n) while keeping the for K o(n).

mathematical problem tractable [10, Eq. (29)].

The final step is the derivation of a recursion g .(n),

An expression forE{Q(S, S, Ru_¢, n, i, )} can be ob- k # 0. Post-multiplying a delayed version of (6) lWT(n —

tained from the evaluation of{g(yl) (yQ)Yg,Yf}, wherey;

andy. and the components &f andY, are zero-mean jointly
Gaussian variates. After laborious calculations, such an expres-
sion follows using the same approach as in [17, Eq. A6]. How-
ever, only a special case is needed to determine the algorithm
behavior, as will be shown in Section II-F. Thus, the complete

expression is not presented here to conserve space.

F. Recursive Generation of the Weight Correlation Matrix

k—j+1)yields
Wn—i—-1)Wrn—k—-j4+1)
=Whn—-iWrn—k—j+1)

7 {W"TX(n — i)+ 2(n —1)

M-1

S aWrin—i—k)X(n—i- k)] }

k=0
Xin—)Whn -k —j+1).

-9

(23)

The time delays of the weight vectors in (17) are functions of,,

several parameters (j, p, ¢, [ andr). Thus, it is not clear how ¢,

5K,,0(n) cannot be obtained by makig= 0 in the recursive expression
Ko, «(n). This would requirds,, ,(n) for b < 0. Thus,K(q, o(n) must be

to determinek; ;(n + 1) recursively from previous available obtained directly from (17).

E {QO,O (5, S, Ri_s, n)}

M—1M-1
Eo Eo spsqt[Ry—p Ky p(n)]
2. —1 =0 q¢= ...
= ¢ sln M—1M—1 Rss
. 2 SpSall[By p Ky p(n)] + o2
p=0 ¢=0
M—1M—1M-=1NM-1 o
2> > > spdgspsi Ry, K, . (n)Ry_,
+ p=0 ¢=0 r=0 k=0 (21)
| MM , MMl
<? > 2 Spsqtr[Rq—qu,p(”)]+1> =) Do 2 SpSqll[Ry—p Ky p(n)] +1
p=0 g=0 p=0 g=0
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Taking the expected value of (23) with the same assumptionsrakation matrices(; ,;(n) required for the recursive evaluation

before and using the notation féf, ,(n) yields of mean weight behavior [see (10)] and the MSE behavior [see
Kiptj(n+1) R The complete analytical model is composed of (10), (16),
= K; jpj—1(n) + pRsWPE{WT(n —k — j + 1)} (19), (22), and (25). Appendix B presents a step-by-step
M—18-1 procedure to initialize the variables and to recursively evaluate
> 2 SpSgBpqKigppyj—1(n) E{W(n)} and¢(n) using the model. Since its implementation

— p=0 =0 (24) s quite laborious, a Matlab code is also available at the authors’

| MMt . web site for download.

o2 pZO qZO spSqll[Rp—g Kp o(n — )] +1

: . ) . [ll. STEADY-STATE ALGORITHM BEHAVIOR
which yields fori = j = 0 _ ) _ o _
This section studies the limiting behavior of the converged

Kox(n+1) FXLMS algorithm. The determination of the steady-state algo-
= Kop—1(n) + ufzéWOE{WT(n —k+1)} rithm behavior from (10), (16), (22), and (25) requires numerical
Mo1K1 methods. However, using the assumption of very small weight
S0 sp8qRp—qKpr—1(n) fluctuations (compared to their mean values), simple analytical
_ p=0 ¢=0 . (25) expressions that are useful for evaluation and design purposes
| Mo1Mol can be determined. ThuB/(n) =~ E{W (n)} is assumed for
F= pgo q;o $pSqtl[Rp—q Kp o (n)] + 1 the steady-state analysis.

. Shttp:/iwww.eel.ufsc.br/~bermudez. The code has not been optimized for
For k = 1,..., M -1, (22) and (25)_C0n5t'tUte_a set of speed but has been tested in numerous examples for reliability and correspon-
recursions that can be used to determine the weight vector afafirce to the analytical model.

Koo(n+1) = Koo(n) + nBE{W (n)}W* R + pRWoE{WT ()} + 120 Res + 202 R W oW RY

M-1M-1 . . M—-18M-1 . -
> > Spqup—qKo,p(”)+ > 2 SPSqKO,p(”)Rp—q

- p:O (1:0 p:O (1:0

l/L [
+ 12W RoW°Rgs —

M—1M-1
0_12 Do 2 SpSqlf[Ry—p Ky p(n)] + 1

p=0 ¢=0

M-1M-1M-1M-1M-1 o
212 Y DD sps,]sksls,,E{WT(n—7’)}R_,,W°Rk_lngk(n)R,]_p
p=0 ¢=0 k=0 (=0 »r=0

+ 3/2
| MM
o2 <? Do Y spsgtr[Ry_ K, ,(n)] + 1)
p=0 g=0
9,2 M-1 )
- r N S B{WT(n— 1)} R, W Ry
| MMt = ) i
o2 2o 2 spsgllRy—p Ky p(n)] +1
p=0 ¢g=0
M—-1M-1 o M—-1M-1 )
+ Z Z $p8qBp—q EAW (n — p)}W?° R} + Z Z Spqu%WOE{WT(” — )} Rq—p
p=0 ¢q=0 p=0 ¢q=0
M—1M-1
Zo Zo spsqtr[Ry—p Ky p(n)] )
+ o’ sin”! M—Ii—M—q; Ras
2 2 Spsgli[Ry_p Ky p(n)] + 02
p=0 ¢g=0
M—1NM—1M-—1RF-1
2u2 $pSySrSkRp— g Kpr(n)Ri—y

p=0 q=0 r=0 k=0

| MMt , MMt
= Do 2 SpSqtiBy—p Ky p(n)] +1 E= Do 2 SpSqtrBy—p Ky p(n)] +1

=0 q=0 p=0 q=0

(22)
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Fig. 2. Example LE{W (n)} for n? = 0.0001 [curve (I)], 0.3 [curve (I1)], and 0.5 [curve (lIl)]. (a)—(c) Different values @f Simulation—ragged curves.
Theory—smooth curves. Plots averaged over 1000 rungg{@)s(n)} for g1 = pimax/5 = 0.04. (b) E{ws(n)} for g2 = pimax/10 = 0.02. (c) E{ws(n)}

fOr ft5 = fimax/100 = 0.002.

A. Steady-State Mean Weight Behavior
Define

M-1 M-1

Z Z SZ‘S]'RZ‘,]'

i=0 =0

(26)

M—-1 M-1

Z Z Siiji—j

=0 4=0

(27)

Substitutinga 1 RsW* for W, in (28) and solving fo €
RT yields

1 Y-
W = lim E{W(n)} = ﬁRg;RgM/O (29)
n—oo — /’7
wheren? is given by
1 _— N
=W RE (R;) RLRIIRW®  (30)

and assume tha&, and R;, are positive definite and that theand corresponds to the system’s degree of nonlinearity defined
algorithm converges a8 — oo. ReplacingE{W (n)} and _
E{W(n+1)} with W, =lim,, ... E{W(n)}in (10) yields, the converged linear case

after simple algebraic manipulation

Y 1 -
Weo = RITR,W? \/—2 WIR, W +1 (28)
g

whereR,, is the autocorrelation matrix of the reference signal
x(n) filtered by S. Thus, R, , is positive definite foiz, positive e

in (2). This can be verified as follows. It is easy to show that for

;-
WE R,Wa

E{i(m)} o =

g4 — o0

tin (31)
whereW,,,.. = R;R;W¢ is obtained from (29) for — oo

(»*> = 0, which is the linear case).

Note that the steady-state mean weight vector is not a scaled
rsion of W, as is true for the LMS algorithm with a nonlin-

definite; and W R,, W, > 0. With these considerations, it earity (equivalentts = § = 1in this case) [10]. As expected,

is clear from (28) thalV,, = aR;'R;W?, wherea € R™.

"Note thatR,, needs to be semi-definite positive fo? > 0.

8After convergencel (n) = W, and the order of andW .., can be ex-
changed.
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Fig. 3. Example 1: Left column: MSE foy? = 0.0001 [curve (1)], 0.3 [curve (II)], and 0.5 [curve (lII)]. Simulation—ragged curves. Theory—smooth curves.
Right column: Verification ofE{W " (n — /)X (n — )X (n — j)W(n — j)} = E{W7"(n — i)R,_,W(n — j)} for * = 0.0001, 0.1, and 0.5. Ragged
curves: Actual value. Smooth curves: Approximation. All plots averaged over 1000 runs. (a) MBE0 nax /5 = 0.04. (D) 11 = pmax/5 = 0.04.¢ =0,

J =1. (C) MSE forpte = trmax/10 = 0.02. (d) ft2 = ftmax/10 = 0.02.i = 0,5 = 0. (€) MSE forgs = fimax/100 = 0.002. (f) gtz = ptmax/10 = 0.02.

1t =20,7 = 2.

the attainable cancellation level depends on the degree of non(it@) and (18)]. On the other han8,{W(n)} is unbounded as
earity, the secondary path resposand the quality of its esti- 72 — 1, and (29) has no stationary points fgr > 1. From (2),
mateS. These effects cannot be reduced byusingasmalks 7? = 1 sets a power threshold above which the adaptive branch
0? — oo (toward the linear case)? — 0, and (29) reduces to cannot cancel the desired sigdéh). Hence, the adaptive filter
the steady-state mean weight vector for the linear case [11, Eggin is never sufficient to overcome the nonlinear saturation.
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Fig. 4. Example 2E{W (n)} for n* = 0.0001 [curve (I)], 0.1 [curve (I1)], and 0.5 [curve (lIl)]. (a)—(c) Different values pf Simulation—ragged curves.
Theory—smooth curves. (@{ws(n)} for g1 = pmax/5 = 0.01. (b) E{wz(n)} for gz = pmax/10 = 0.005. (€) E{wi4(n)} fOr gz = fimax/100 =
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0 2000 4000

6000

0.0005.

B. Steady-State MSE

A. Example 1

An approximate expression for the steady-state MSE be-ConsiderW° = [0.41300.46270.48030.4627 0.4130]7,

havior can be determined by replacifig(n) with the steady- o o — 1, x(
state mean weight vector expression (29) and using the dﬁ&isez(n) with

n) white with variances2 = 1, measurement
0% = 107, and perfect secondary path esti-

initions of R, Rs,, and R; in (16). After simple algebraic mation withS = $ = [0.93250.27980.1865 0.0933 0.0933] .

manipulations

lim £&(n)

- oN—=1 L 1
=W RY (Rg“s) Ry RIRW° [? 8111_1(772)}
— oW RERMRW + W RoW® +02.  (32)

Itis easy to verify that fob = S andn? — 0, (32) tends to [11,
Eq. (11)]

bmin = 02 + W {Ro— RIRR W (39)

Simulations are presented for three step sizes (normalized
with respect to the linear FXLMS stability limit). The stability
limit . &~ 0.2 has been determined by simulation. Step
Sizesul = I/LHlaX/5’ M2 = NInaX/lO and Hu3 = NInaX/lOO
have been used to evaluate the models for large, moderate,
and smallz. In addition,> = 0.0001, 0.3, and 0.5 have been
selected to illustrate the model accuracy for small, moderate,
and large degrees of nonlinearity. Fig. 2(a)—(c) compare the
simulated mean weight behavior with the analytical predictions
using (10), (19), (22), and (25). Each plot presents the results
for n* = 0.0001, 0.3, and 0.5 and a sing}e averaged over
1000 realizations. The vector components were selected at

which is the expression for the minimum MSE in the linear CaSandom. The remaining components have similar behavior. The

IV. SIMULATION RESULTS

analytical model is accurate even for relatively large step sizes.
The steady-state mean weight behavior, which is predicted by

This section presents simulation results in support of the tH&9), is very accurate, even for the largein Fig. 2(a). The
oretical models. Representative plots have been selected fropredicted steady-state values fer(n) by (29) are 0.2614,
large number of results.

0.3124, and 0.3697. Note that the weight fluctuations increase
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Example 2: Left column: MSE foy2 = 0.0001 [curve (1)], 0.1 [curve (II)], and 0.5 [curve (l1)]. Simulation—ragged curves. Theory—smooth curves.

Right column: Verification ofE{W 7 (n — i)X(n — ))X"(n — ))W(n — j)} =& E{W"(n — i)R,;_;W(n — j)} for n* = 0.0001 [curve (1)], 0.1 [curve
(], and 0.5 [curve (I11)]. Ragged curves: Actual value. Smooth curves: Approximation. All plots averaged over 1000 runs. (a) MSEfpE,../5 = 0.01.
(D) 11 = fmax/d = 0.01.7 = 0,5 = 0. (¢) MSE forptz = fimax/10 = 0.005. (d) 11 = ptamax/5 = 0.01.7 = 0, j = 2. (€) MSE forpts = frmax/100 =

0.0005. () 1 = ftmax/5 = 0.01.4 = 0, = 4.

with »?. This increase is probably due to saturation, whickhows curves for;> = 0.0001, 0.3, and 0.5. Plots are shown
clips the adaptive filter output for larges. Clipping in turn for different step sizes. All plots were obtained by averaging

increases the error signal and the weight update.

1000 runs. The analytical model and the simulations are in close

Fig. 3(a), (c), and (e) show the simulated MSE and the thagreement in all cases, even for relatively large= 1;. The
oretical MSE using (16), (10), (19), (22), and (25). Each figursteady-state MSE [predicted by the closed form in (32)] are
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Fig. 6. Example 3. Left columnE{W (n)} for n? = 0.0001 [curve (1)], 0.3 [curve (II)], and 0.5 [curve (Il)]. Right column: MSE fa@* = 0.0001 [curve
(0], 0.3 [curve (II)], and 0.5 [curve (Il)]. Simulation—ragged curves. Theory—smooth curves. All plots averaged over 1000 runswgd) )} for g =
Hmax/5 = 0.012. (b) MSE forpy = ftmax/5 = 0.012.(c) E{w(n)} for gz = ftmax/10 = 0.006. (d) MSE forptz = fimax/10 = 0.006. (€) E{ws(n)} for
H3 = Hmax/100 = 0.0006. (f) MSE for 3 = ftmax/100 = 0.0006.

—14.34dB,—12.85 dB, and-10.85 dB. These values are accuB. Example 2

rate only for small. [Fig. 3(e)] since they do not account forthe This example repeats Example 1 for a longer impulse
weight fluctuations. The recursive model should be run to acaesponsé?’® and for an imperfect estimate of the secondary
rately predict the steady-state behavior for moderate and layggth. ConsiderW° = [0.0156 0.0598 0.1260 0.2041

w. Fig. 3(b), (d), and (f) verify the accuracy of assumption AD.2822 0.3485 0.3927 0.4083 0. 3927 0.3485 0.2822

for differents, j, 1, andn?. 0.2041 0.1260 0.0598 0.0156]7, W W° = 1, § =
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[0.9356 0.2807 0.1871 0.0936 0.0468]%7, STS = 1, Closed-form expressions have been derived for small step sizes
S = [0.89220.3965 0.1487 0.1487 0.0496]7, ST3 = 1, for the steady-state mean weight and MSE. Monte Carlo simu-
#(n) white witho2 = 1 ando? = 107°. The stability limit |ations displayed excellent agreement with the theoretical pre-
fmax = 0.05 was determined by simulation. The parametewictions for both small and large step sizes. This agreement pro-
Wefeul = pmax/5, f2 = ftmax/10, B3 = pmax/100, and  vides strong support for the approximations used to derive the

= 0.0001, 0.1, and 0.5. theoretical model.
F|gs. 4 and 5 verify the analytical model using recursions
(10), (16), (19), (22), and (25). The right column of Fig. 5 vali- APPENDIX A
dates assumption Al for different delays ane- ;1. Fig. 5(a) DERIVATION OF E{W (n — i + 1)W7(n — j + 1)|U}

and (c) suggest that the model can deviate from the simulation

for large step sizes and very small degrees of nonlinearity. ThlsMUItIplylng delayed versions of (6) and taking the expected

mismatch is probably due to some of the stochastic approxm¥z§ ute conditioned It yields (34), shown at the bottom of the
tions being based on slow algorithm learning. Fig. 5(e) shoW§X! Page.
The expected values in (34) are now determined.
that the mismatch is minimal for small used in most prac- Expression 1:
tical applications (see [18] for instance). The model is accurate P '
for the initial transient phase (cancellation+t80 dB, compat-
ible with most practical applications) and in steady-state, even  E{X(n — j)X} (n — j)|¥}
for largep.. The excess MSE (due to the nonlinearity) increases

as the system deviates from the linear case. Then, the inaccu- M-l 2

racies of the analytical model can be neglected even for large - Z Skk {*X DX (n—j— )|‘I’}

step sizes [see curves (II) and (1) in Fig. 5(a), (c), and (e)]. The

significant impact of the nonlinearity on the cancellation level -1

(steady-state MSE) is illustrated by this example. Clearly, the = Z 8wRy = RY. (35)
nonlinear model is required to accurately predict this cancela-

tion level.

Expression 2: AssumingX (n — p) statistically independent
C. Example 3 of U, Vp

This example verifies the model accuracy for correlated
inputs. z(n) is an autoregressive process with = 1 that E{z(n—HXF(n— j)|u}
is obtained by passing a white noisgn) with variance / . T .
= 0.0965 through the filter with attenuation given by = E{z(n = )Y E{X7 (n = j)|¥} = 0. (36)

z) = 1 —0.1952~! + 0.952=2. The eigenvalue spread of

Ry is equal to 39.82 [2]W° = [0.77560.5171 —0.3620]", Expression 3: The delayed version of the expression has al-
S = [0 8944 0. 4472]T S = [0 9701 0. 2420]T (imperfect ready been evaluated for (8).

secondary path eStlmathﬂbLmax = 0.06 (experimentally  Expression 4:AssumingX (n — p) statistically independent
obtained for the linear case). The parameters used wefel, ¥ p

againul = I’LHlaX/5! M2 = Nlnax/loa H3 = NInax/lOO: and

n»?> = 0.0001, 0.3, and 0.5. Fig. 6 shows the theoretical and .

simulated results. Fig. 6(a), (c), and (e) compare the simufa{#(n = D)2(n = )Xy (n = X7 (n = j)|}

tions and the mean weight behavior predicted by the model.= E{Z(ﬂ —)z(n — )} E{Xj(n — )XF (n - j)}

Fig. 6(b), (d), and (f) show the results for the MSE. Note that

o,
(

M—1M-1

the model accurately predicts the simulation behavior. — 025 —j Z Z 5,5,F {X i XT(n—j—q)}
p=0 ¢=0
V. CONCLUSION
M—-1M-1
This paper has presented a statistical analysis of the filtered-X= o §(i — j) Z Z 3p8q R _itg—p- (37)
LMS (FXLMS) algorithm with a nonlinear secondary path. This p=0 g=0

structure can model nonlinear effects in active noise and active

vibration control systems when transducers are driven by largezypression 5:

amplitude signals. Deterministic nonlinear recursions were de-

rived for Gaussian inputs for the transient mean weight, mean

square error, and cross-covariance matrix of the adaptive weight £ { z(n — I)WO X(n—i)Xp(n— )X (n— j)I\If}
vector at different times. The new results generalize previous

results obtained for linear secondary paths. The cross-covari- = E{z(n — j)}E {WOTX(n — )X (n — 1)

ance results provide improved steady-state predictions (as com-

pared with previous results) for moderate to large step sizes. X (n— j)|‘I’} =0. (38)
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Expression 6:Using the moment-factoring theorem for M1 - M—1
Gaussian variates [2], it can be easily shown that + Z SRy WW? Z SeRj_ivq
T p=0 q=0
E {Xf(n — )X (n = )WW X(n — )X T (n - j)qu}
M-1 M-1 . M—-1 M—-1
= Z SprpWOWO Z 840 W R W Z Z 8p8qRj—itq—p- (39)
p=0 p=0 ¢=0
E{W(n —i+1)Wi(n —j+ 1)V}
W
= W(n =)W (n—j)+uWn - )W E{X(n = )X] (n— )T}
(2)
ot [Wln = W ELX (0= DXF (- D]+ W n — ) Elzn — )X T (n - Y
. - . T
+ 1 [W(n — §)E{z(n— )X} (n— )| V}]
' ®
[M—1
—u|E {g S aWln—i—k)X(n—i- k)] Xy(n —1) \If} WT(n - )
L A=0
r rM—1 T
— i E{g Z ssWhn—j—DX(n—j— l)] Xs(n —j) \If} Wh(n —L)]
L =0
) ®)
+ 12 E{z(n —0)2(n — 5)Xp(n — )X (n — DI} +4° E{z(n — HW* X(n — )X y(n — i) X[ (n — 5)[¥}
T . . . T
p? [Ble(n— )W X(n = j)Xp(n - )XF (n— )|}
(6)
1 B{X;(n = )X (n — YW W X(n = j)XF (n — )|V}
()
M-1 - N
-2 E {g S saW n—i-k)X(n—i- k)] W X(n—5)Xs(n—i)XF (n—j) \If}
k=0
M-1 . T
— 1’ E {g S sWhn—j—-DX(n—j- 1)] W X(n—i)Xs(n—j)Xf(n—1i) \I/}
=0
(®)
’ M—1 ;
—u? E{7 n—1i)g [Z sWhin —j —l)X(n—j—l)] Xf(n—i)X}“(n—j) \I/}
=0
M-1 T
—2E {z(n — g [Z aWThin—i—k)X(n—i— k)] Xp(n—§)XF(n—1i) \p}
k=0
M-1 M—-1 A
+u? E{g Z stWhn—i—k)X(n—i— ] [Z sWhn—j—-DX (n—j—l)] X¢(n—i) X7 (n—j) \If} (34)
k=0
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E{g \p}

M-—1
ST sWi(n—i— k) X(n—i— k)| W X(n—j)Xs(n—)XF(n—j)
k=0

1

M—1M=1 3/2
2[5 > ¥ spsWh(n—i—p)Ry yW(n—i—q)+1

p=0 ¢=0

M-1M-1M-1M-1M-1

OIS sesksisg3 W (n—i — )R WO R W (n — i — )W (n— i — p)Rj_igqp

p=0 ¢=0 k=0 (=0 »=0

1
+

M—1M-1
\/# S0 spsWE(n—i—p)Ry_,W(n—i—q)+1

p=0 ¢=0

SN St W — i = R WOR gyt D > S8Ry W(n—i— p)W RY

M—-1M-1M-1 M-1M-1
p=0 ¢=0 r=0 p=0 g=0

—1 M-

—18 1
> $p8a8, Ri_i oWWT(n —i—p)Rj_irg_p| - (40)
q=0 0

M
+>
p=0 r=

Expression 7:Using the same approach used to derive [17, @ (57 5‘7 Ri_s,n, i, J, \p)
Eq. A6] and [10, Eq. 61], after laborious calculations, we have
(40), shown at the top of the page. {

Expression 8: -

g z_: skWT(n—i—k)X(n—i—k)]

k=0
M1 M—-1
T i i
{ P [Z&W nmj-Dx (n—j—z)] -Q[Zszw (0= = DX(n l>]
=0
7 /b 7T ,'
Xp(n —)XF(n—j) \If} - Xy(n =) X5 (n —3) ‘I/} (43)
APPENDIX B
M . IMPLEMENTATION OF THE ANALYTICAL MODEL
=FE{z(n—-9)} F{yg Z sWh(n—j—DX(n—j—1)
1. Initialization:

1.1) LetMy = max{M, M}. )
\If}:o. (412) 1.2) Determine R, for —M, < ¢ < Mo, Ry =
ZAfol §JR—J’ andRss = ZM 12?401“%%“%1 i—j*
1.3) Make

- Xp(n—)X} (n—j)

Expression 9: An expression for this expected value can be EOW 0
derived using the same approaches used to derive [17, Eq. A13] {W(0)} =0,
and [10, Eq. 69]. However, this involved expression is not nec{ Ko, x(n) =0, 0<k< My—1andn <0.
essary for the purposes of this paper, as is explained in the mai 0) = o RaWe 2
text. Thus, this term will be represented by the short functional §0) EUARE

notation 2. lterations: |
2.1) EvaluateK,, o(n + 1) using (10), (19), and (22).
Q (5’ S, Ru_s, m, 1, J, \p) ) 2.2) Evaluatek ; for 1 < k < My — 1 using (10), (19),
and (25).

2.3) EvaluateF{W(n + 1)} using (10) and (19).
2.4) Evaluate(n + 1) using (10), (16), and (19).
2.5) Return to step 2.1).

Combining all terms of (34), we have (42), shown on the next

page, wherek; = Ej‘igl 3;R_;, and
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