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Stochastic Analysis of the LMS Algorithm with a
Saturation Nonlinearity Following the Adaptive Filter

Output
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Abstract—This paper presents a statistical analysis of the least
mean square (LMS) algorithm with a zero-memory scaled error
function nonlinearity following the adaptive filter output. This
structure models saturation effects in active noise and active
vibration control systems when the acoustic transducers are
driven by large amplitude signals. The problem is first defined as
a nonlinear signal estimation problem and the mean-square error
(MSE) performance surface is studied. Analytical expressions
are obtained for the optimum weight vector and the minimum
achievable MSE as functions of the saturation. These results are
useful for adaptive algorithm design and evaluation. The LMS
algorithm behavior with saturation is analyzed for Gaussian
inputs and slow adaptation. Deterministic nonlinear recursions
are obtained for the time-varying mean weight and MSE behavior.
Simplified results are derived for white inputs and small step
sizes. Monte Carlo simulations display excellent agreement with
the theoretical predictions, even for relatively large step sizes. The
new analytical results accurately predict the effect of saturation
on the LMS adaptive filter behavior.

Index Terms—Adaptive filters, adaptive signal processing, least
mean square methods, transient analysis.

I. INTRODUCTION

A DAPTIVE algorithms are applicable to system identifi-
cation and modeling, noise and interference cancelling,

equalization, signal detection and prediction [1]–[3]. Most
adaptive system analyses assume nonlinear effects can be
neglected and model both the unknown system and the adaptive
path as linear with memory. Linearity simplifies the mathe-
matical problem and often permits a detailed system analyses
in many important practical circumstances. However, more
sophisticated models must be used when nonlinear effects are
significant to the system behavior (i.e., amplifier saturation).
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Linear adaptive cancellation paths are the natural design
choice in linear system identification. However, numerous
practical adaptive systems have significant intrinsic non-
linearities in the cancellation path. Such nonlinearities are
unavoidable and their effects on the overall adaptive system
behavior must be considered in a design situation. Important
application examples are active noise control (ANC) and active
vibration control (AVC) systems. ANC and AVC systems
include acoustical/mechanical paths. Signal converters (A/D
and D/A), power amplifiers, and transducers (speakers or actu-
ators) transform digital electrical signals into analog electrical
or mechanical signals for proper cancellation [1]. System or
secondary path nonlinearities1 can become important nonideal
effects in ANC and AVC systems [4], [5]. The nonlinearity
can be caused by overdriving the electronic circuitry or the
speakers/transducers in the secondary path, for example.

In [5], Bernhardet al. briefly discussed nonlinear effects in
ANC systems, but no adaptive algorithm behavior analysis was
presented. In [4], Snyder and Tanaka propose modeling a non-
linear primary path with a neural network nonlinear controller
in the AVC system. Again, no analysis was presented for algo-
rithm behavior. Most practical ANC and AVC systems contain
nonlinearities in the secondary path. Therefore, it is of great in-
terest to determine the effect of such nonlinearities on the adap-
tive algorithm. Such analysis is unavailable in the open litera-
ture. Several researchers have studied the statistical behavior of
the LMS algorithm with nonlinearities applied to the correlation
multiplier. Representative examples are [6]–[15]. These results
cannot be modified to explain algorithm behavior with a non-
linearity at the adaptive filter output.

This paper investigates the statistical behavior of the system
in Fig. 1. The function is a zero-memory saturation nonlin-
earity. Stochastic analysis of this system can provide important
insights into nonlinear secondary path effects upon ANC and
AVC system behavior. Neural networks can be viewed as adap-
tive filters with output nonlinearities during the learning phase.
Thus, the results presented here may also be useful for studying
the statistical behavior of neural networks.

Fig. 1 is analyzed first as estimation of a sequence from
a nonlinear function of the reference signal . The mean
square error (MSE) performance surface properties are deter-
mined as functions of the system’s degree of nonlinearity (de-
fined below). The MSE surface is shown to deform due to the

1Secondary path is the usual term for the path leading from the adaptive filter
output to the cancellation point [1]
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Fig. 1. Block diagram of the nonlinear adaptive system.

nonlinearity but remains unimodal. The optimum weight vector
is a scaled version of the Wiener weight for the linear case.

Deterministic nonlinear recursions are derived for the mean
weight and mean square error (MSE) behaviors of the LMS
adaptive algorithm for Gaussian inputs and slow adaptation. The
LMS algorithm introduces a multiplicative bias in the converged
mean weight vector (compared with the optimum solution). The
degree of nonlinearity is shown to affect the algorithm behavior
and the achievable level of cancellation. Monte Carlo simula-
tions display excellent agreement with the theoretical predic-
tions.

II. A NALYSIS OF THE MSE SURFACE

Consider initially the nonadaptive system shown in Fig. 2.
This block diagram corresponds to a nonlinear mean-square es-
timation problem [16, Sec. 7–5]. The sequence is estimated
in the mean square sense by a nonlinear function of the reference
signal . The properties of the MSE surface as a function of
the system’s degree of nonlinearity is studied here for Gaussian
inputs.

A. Analysis Model

The notation for Fig. 2 is as follows.
Response of
the unknown
system.
Linear filter
weight vector.
Reference
signal.
Observed input
data vector.
Primary signal.
Measurement
noise.
Output of the
linear filter.
Saturation non-
linearity.
Nonlinearity
output.

Fig. 2. Nonlinear optimal filtering problem.

is assumed stationary, zero-mean, and Gaussian with
variance . The measurement noise is stationary, white,
zero-mean, Gaussian, with variance and uncorrelated with
any other signal. The saturation nonlinearity is modeled by the
scaled error function

(1)

The system’s degree of nonlinearity is controlled by the param-
eter in (1) and is defined as

(2)

where
autocorrelation matrix of the
input vector;
variance of ;

maximum variance of ob-
tained by taking the limit of (1)
as .

Equation (2) expresses the ratio of the power in (ideal
output of for the linear case) to the maximum available
power in , which is the cancelling signal. Note that

and sgn .
Hence, the behavior of can be varied between that of a
linear device and that of a hard limiter by changing. The
effects of very large nonlinearities ( ) can be studied by
scaling by a constant such as , . This artifice
avoids the attenuation factorin the limit as sigma approaches
zero. This paper studies the algorithm behavior for in
(1) that models the degrees of nonlinearity of most interest
in practical applications. Results for very large degrees of
nonlinearity can easily be obtained from the results presented
here by carrying the effect of throughout the derivations2 .

B. MSE Performance Surface

The error signal in Fig. 2 is given by

(3)

2In this case,max � = (�=2)A and (2) becomes� =

(�=2)(� =maxf� g) = (1=A )W R W



1372 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001

(a) (b)

(c) (d)

Fig. 3. Mean-square error performance surface for different degrees of nonlinearity.W = [0:707 0:707]; � = 1; � = 10 ; eigenvalue spread ofR
equal to 24. (a) MSE contour for� = 10 . (b) � = 0:01. (c) � = 0:1. (d) � = 0:5.

Squaring obtained from Fig. 2 and taking the expected
value yields

(4)

The first three and the fifth expectations in (4) are easily
evaluated using the statistical properties of , , and

. Thus, , ,
, and . The

remaining terms are expectations of functions of zero-mean
jointly Gaussian variables. The fourth expectation can be
obtained from [17, (A19)] for , , , and

. Thus

(5)

The last expectation can be obtained from [18, (40)] for
and as

(6)

Combining the above results into (4) yields an analytical ex-
pression for the MSE surface

(7)

Equation (7) reduces to the MSE expression for the linear
case as [3]. Fig. 3 shows examples of the MSE surface
for different degrees of nonlinearity . Notice that the surface
deforms as increases, but appears to remain unimodal. This
important result will be demonstrated in the next subsection.

C. Stationary Points

is assumed positive definite, which is a reasonable as-
sumption for most practical systems [3]. Differentiating (7) with
respect to , equating the result to zero, and denotingas the
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finite values of that satisfy the resulting equation, it can be
easily shown that

(8)

Note that the multiplier in (8) is a real scalar for any finite
and . Thus, is a scaled version of . This result is in

agreement with the result derived in [19] for a single perceptron.
Substituting for in (8) and using (2) yields

(9)

Equating the scalar multiples in both sides of (9) yields

(10)

which shows that must be positive. Squaring (10) and solving
for yields the four solutions

(11)

It is easy to verify that the only solution satisfying is

(12)

Equation (12) shows that

(13)

corresponds to the only finite point for which .
Appendix A presents a mathematical proof that the Hessian

is positive definite at . Thus, (13) corre-
sponds to a minimum of . Fig. 4 shows the multiplicative
bias for a large range of .

Setting in (7) and using (13) yields an expression
for the minimum MSE

(14)

Again, as , (14) reduces to the linear case optimum
solution . Fig. 5 shows the excess MSE (the additional
loss in cancellation level due to the nonlinearity) relative to the
linear case ( ) as a function of for .
Figs. 4 and 5 show the significant impact of the nonlinearity on
the achievable cancellation level as compared with the bias of
the optimum weight vector.

III. A NALYSIS–LMS ALGORITHM TRANSIENT BEHAVIOR

This section analyzes the transient LMS algorithm be-
havior for Fig. 1. The weight vector is time-varying

Fig. 4. Optimum weight vector multiplicative bias as a function of� .

Fig. 5. Steady-state excess MSE relative to the linear case (� � � ) as a
function of� .

( ) and is adjusted with the LMS algorithm. Thus,
.

A. Mean Weight Behavior

The weight update equation for the LMS algorithm is given
by

(15)

where is the adaptation step size, and

(16)

Using (16) in (15) yields

(17)
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The expected value of (17) is obtained in two steps. First, the
expectation is taken conditioned on , leading to the recur-
sion

(18)

For sufficiently small , the first conditional expectation on the
right-hand side of (18) can be approximated [20], [21] by

(19)

The second conditional expectation on the right-hand side of
(18) is zero since is statistically independent of . The
third conditional expectation is [see (5)]

(20)

Substituting (19) and (20) into (18) yields

(21)

Since the joint probability density function of the vector
is not known, the expected value of (21) can only be approxi-
mated. The following approximation is used:

tr

(22)

where and have been approximated
by their expected values. tr stands for the trace of the ma-
trix. Note that (22) reduces to the mean weight equation for the
linear case as . An approximate recursive expression
for will be found in the next subsections.

B. Mean Square Error Behavior

Squaring (16) and taking the conditional expectation given
yields

(23)

The first expectation has been evaluated in (19). The second
and the fifth expectations are equal to zero becauseis zero
mean and independent. The third expectation has been evaluated
in (20). The fourth one is equal to . The last term follows
directly from (6) by replacing with . Thus

(24)

Substituting (19), (20), and (24) in (23) and rearranging the
terms yields

(25)

The evaluation of the expected value of (25) over is not
a simple task because the density function of the weight vector
is not known. It can be approximated by

tr

tr

tr

(26)
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As (linear case), (26) converges to the MSE expression
for the linear case [3]:

tr (27)

C. Weight Correlation Matrix

Evaluation of (22) and (26) requires . A re-
cursion for the conditional weight correlation matrix is derived
in Appendix B as (28), shown at the bottom of the page. The
expectation of (28) over represents a formidable math-
ematical task. Approximate expressions can be obtained using
numerous different approaches. The following approximations
preserve information about the first and second moments of the
adaptive weights in the dominant terms of (28) while keeping
the mathematical problem tractable. These approximations for
a stochastic model of the adaptive algorithm behavior are sup-
ported (even for reasonably large values of) by the simulation
results presented in Section VI

terms in

tr

tr terms in

terms in

terms in (29)

Neglecting terms in for in (29) and letting
yields (30), shown at the bottom of the next

page. Equations (22), (26), and (30) form the analytical model

for studying the statistical behavior of the LMS adaptive algo-
rithm in the system of Fig. 1.

IV. SIMPLIFIED MODEL-WHITE SIGNALS AND SLOW

ADAPTATION

The analytical model derived above can be specialized for
a white input signal by setting . However, further
simplifications are possible for white inputs and very small.
The importance of such a simplified model is twofold: i) The
white input case with small step-size represents an important
share of practical applications, mainly in system identification,
and ii) the analytical model reduces to scalar recursions. These
are easy to handle and lead to interesting insights into the al-
gorithm behavior. The white-input-small-algorithm behavior
can serve as a baseline for other cases. Larger step sizes speed
up convergence but with an increase in steady-state cancellation
level. Signal correlation can slow-down convergence.

Consider white and sufficiently small so that the
effects of weight fluctuations can be neglected in (22). Thus,

and (22) can be further approximated by

(31)

Consider the initialization weight vector . From (31),
in this case. Thus, is collinear

with at the first iteration. Moreover, will al-
ways follow the direction of since the term multiplying

in (31) is a scalar. Hence, (31) can be written as

for all (32)

(28)
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and the recursive equation becomes scalar. Substituting (32) in
(31) and using (2) leads to

(33)

Applying the same assumptions to (26) and using (2),
and leads to

(34)

Equations(32)–(34) determine and for
all when the adaptive filter is initialized at , the
input signal is white, and the step size is small.

V. STEADY-STATE ALGORITHM BEHAVIOR

This section studies the limiting behavior of the converged
LMS algorithm. The determination of the steady-state algorithm
behavior from (22), (26), and (30) requires numerical methods.
However, using the assumption of very small weight fluctua-
tions (compared with their mean values), very simple analytical
expressions that are useful for evaluation and design purposes
can be determined. It is then assumed that

for the steady-state analysis.

A. Mean Weight Steady-State Behavior

Assume algorithm convergence as . Replacing
with in (22) yields

(35)

Since positive semi-definite [3], .3 Thus,
it is clear from (35) that , where . Substi-
tuting for in (35), solving for , and using (2)
yields

(36)

which shows that converges to a scaled version of
the unknown system’s response for Gaussian input signals. The
identification error caused by the nonlinearity increases as
. This steady-state error cannot be reduced by reducing the

adaptation step size. As , generated by the
LMS algorithm grows without limit. Equation (36) has no sta-
tionary points for . This multiplicative bias occurs be-
cause the instantaneous approximation of the MSE used to de-
rive the LMS algorithm update equation does not consider the
nonlinearity effect.

Notice from (2) that establishes a power threshold4

( ). Above this threshold, the adaptive
branch (including the nonlinearity) cannot provide sufficient
signal power to cancel the power in the desired signal (i.e.,
the adaptive algorithm is not able to increase the filter gain suffi-
ciently to overcome the nonlinear saturation). Hence, the adap-
tive filter gain increases without bound.

In addition, notice that as (toward the linear case),
, and (36) reduces to the steady-state mean converged

weight vector for the linear case.

B. Steady-State MSE

An approximate expression for the steady-state MSE be-
havior is determined by replacing with the steady-state

3Positive definiteness ofR is required for the singular case of� = 0
4It can be readily shown that the thresholdmaxf� g = (�=2)� is valid

even ifg(y) in (1) is scaled by a nonzero real constant.

tr tr

tr

tr

tr
tr

tr tr
(30)
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Fig. 6. Weight bias� (W = � ~W ) caused by the LMS algorithm as a
function of� .

mean weight vector expression (36) in (26). After some simple
algebraic manipulations

(37)

The first term in (37) is the effect of the nonlinearity on the
LMS algorithm steady-state MSE for small. As ,

(the minimum MSE for the linear LMS
algorithm with slow adaptation). Equations (36) and (37) show
how nonlinearity affects the linear LMS algorithm steady-state
behavior. These expressions must also be compared with the re-
sults obtained for the MSE performance surface to determine
the weight vector bias and the excess MSE. These results are
significant because the nonlinearity is usually inherent to
the system.

The LMS multiplicative weight bias is obtained from (13)
and (36) as

(38)
As (linear case), . When , and grow
without bound. Fig. 6 shows the fast increase in the converged
multiplicative weight bias as a function of .

The steady-state excess MSE (EMSE) of the LMS algorithm,
relative to (14), is obtained from (14) and (37) as

EMSE

(39)

with defined in (12). Fig. 7 shows the steady-state EMSE for
and normalized signal power ( ).

The impact of the nonlinearity must be compared with the
linear case. This is because many practical systems use the

Fig. 7. Steady-state excess MSE for the LMS algorithm as a function of� .

LMS algorithm presuming the system linear. Such is the case
in active noise control systems, for example. The nonlinear
effect on the MSE surface adds to the minimization of the
MSE using a stochastic gradient algorithm. The total devi-
ation from the linear case combines the nonlinear effect on
the MSE surface and the EMSE (39) resulting from using
a stochastic gradient algorithm. remains bounded as

, even though the adaptive filter weights diverge. This
behavior is due to the nature of the nonlinear saturation. It
is easily shown that . Thus,

, which leads to the bounded
nonlinearity output and bounded MSE.

VI. SIMULATION RESULTS

This section presents some simulation examples in support
of the assumptions used to derive the theoretical models. Some
representative plots have been selected from a large set of re-
sults.

1) Example 1: Consider
, , white with and

measurement noise with . Simulations are
presented for three step sizes (normalized with respect to the
linear LMS stability limit tr ). Step sizes

, , and
have been used to evaluate the models for large, moderate, and
small . In addition, 0.0005, 0.05, 0.3, and 0.5 have been
selected to illustrate the model accuracy for small, moderate,
and large degrees of nonlinearity. Different values ofare
used for weight and MSE behaviors to avoid superimposed
curves in single plots.

Fig. 8(a)–(c) compares the simulated mean weight behavior
with the analytical predictions using (22) and (30). Each plot
presents the results for 0.0005, 0.3, and 0.5 and a single.
The vector components were selected at random. The remaining
components have similar behavior. The analytical model is ac-
curate, even for relatively large step sizes. The steady-state mean
weight behavior, predicted by (36), is very accurate, even for the
large in Fig. 8(a). The predicted steady-state values for
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(a) (b)

(c)

Fig. 8. Example 1:EfW (n)g for � = 0:0005 [curve (I)], 0.3 [curve (II)] and 0.5 [curve (III)]. Plots (a), (b), and (c) for different values of�. Simulation—ragged
curves. Theory—smooth curves. (a)Efw (n)g for � = (� =5) = 0:08. (b) Efw (n)g for � = (� =10) = 0:04. (c) Efw (n)g for � =
(� =100) = 0:004.

by (36) are 0.480, 0.574, and 0.679. Note that the weight fluc-
tuations increase with . This behavior is probably due to the
saturation that clips the adaptive filter output signal for larger

. This clipping results in a larger error signal and to a larger
weight update at each iteration.

Fig. 9(a), (c), and (e) show the simulated MSE and the theo-
retical predictions using (26) and (30). Each figure shows three
curves, corresponding to 0.0005, 0.05, and 0.5. Different
plots are shown for different step sizes. Fig. 9(a) was obtained
by averaging 1000 runs. Five hundred runs were averaged to ob-
tain Fig. 9(c) and 9(e). The analytical model matches the simula-
tions very well in all cases, even for the relatively large .
The steady-state MSE values [which were predicted by (37)] are

dB, dB, and dB. However, these values are
clearly accurate only for small step sizes. Fig. 9 shows that the
predicted steady-state values for the simplified model are closer
to the simulation as decreases.

Fig. 9(a), (d), and (f) verify the accuracy of approximation
(19) for different and . Three vector components have been

chosen at random to conserve space. All other components show
similar behavior. The lines connecting the points are used for
clarity only. Fig. 10(a) and (b) verify the accuracy of (32)–(34)
for white inputs and small . Fig. 10(a) and (b) use the same
signals and parameters as in Figs. 8(c) and 9(e), respectively.
Figs. 8 and 9 show that increasing is more significant to the
level of cancellation (steady-state MSE) than to the converged
weight vector. The weight vector behavior for is very
close to the behavior for and, hence, is not shown.
On the other hand, the steady-state MSE varies nearly by 30 dB
as increases from 0.0005 to 0.05. This is mainly due to the
distortion of the MSE surface, as demonstrated in Section II-B.

2) Example 2: This example repeats Example 1 for a corre-
lated input signal. Thus, all the parameters, vectors, dimensions,
and signal characteristics are the same as in Example 1, unless
otherwise stated. The input signal is a unit-variance au-
toregressive process obtained from a white Gaussian process so
that the input vector has an autocorrelation matrix
with eigenvalue spread [16].
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Example 1: Left column: MSE for� = 0:0005 [curve (I)], 0.05 [curve (II)] and 0.5 [curve (III)]. Simulation-ragged curves. Theory-smooth curves. Right
column: Verification of (19) for� = 0.0005, 0.05, and 0.5 (lines joining point only for clarity).(�)EfX(n)X (n)W (n)g; (�)EfX(n)X (n)gEfW(n)g.
(a) MSE for� = (� =5) = 0:08. (b) � = 0:0005; � = (� =5) = 0:08; component 1. (c) MSE for� = (� =10) = 0:04. (d) � = 0:05;
� = (� =10) = 0:04; component 2. (e) MSE for� = (� =100) = 0:004, (f) � = 0:5; � = (� =100) = 0:004; component 3.
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(a) (b)

Fig. 10. Example 1: Verification of the simplified model. (a)Efw (n)g. Theory obtained from (33). (b) MSE with theory obtained from (33) and (34). All
parameters and data identical to Figs. 8(c) and 9(e). (a)Efw (n)g for � = (� =100) = 0:004. (b) MSE for� = (� =100) = 0:004.

(a) (b)

(c)

Fig. 11. Example 2:EfW (n)g for � = 0:0005 [curve (I)], 0.3 [curve (II)] and 0.5 [curve (III)]. Plots (a), (b), and (c) for different values of�.
Simulation-ragged curves. Theory-smooth curves. (a)Efw (n)g for � = (� =5) = 0:08. (b)Efw (n)g for � = (� =10) = 0:04. (c)Efw (n)g
for � = (� =100) = 0:004.

Figs. 11 and 12 verify the analytical model using recursions
(22), (26), and (30). The model accuracy is preserved for corre-

lated input signals. The same conclusions are also valid as from
Example 1.
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(a) (b)

(c) (d)

(e) (f)

Fig. 12. Example 2: Left column: MSE for� = 0:0005 [curve (I)], 0.05 [curve (II)] and 0.5 [curve (III)]. Simulation-ragged curves. Theory-smooth curves. Right
column: Verification of (19) for� = 0.0005, 0.05, and 0.5 (lines joining point only for clarity).(�)EfX(n)X (n)W (n)g; (�)EfX(n)X (n)gEfW(n)g.
(a) MSE for� = (� =5) = 0:08. (b) � = 0:0005; � = (� =5) = 0:08; component 2. (c) MSE for� = (� =10) = 0:04. (d) � = 0:05;
� = (� =10) = 0:04; component 3. (e) MSE for� = (� =100) = 0:004, (f) � = 0:5; � = (� =100) = 0:004; component 1.
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(a) (b)

(c) (d)

Fig. 13. Example 3: Algorithm behavior for highly correlated inputs and large step sizes.� = 32:22. Simulation-ragged curves. Theory-smooth curves. (a)
MSE behavior. (b) Mean weight behavior. (c) and (d) Verification of (19).(�)EfX(n)X (n)W (n)g; (�)EfX(n)X (n)gEfW(n)g. (a) MSE for� =
(� =2) = 0:0333 and� = 0:0005 [curve (I)], 0.05 [curve (II)], and 0.5 [curve (III)]. (b)Efw (n)g for � = (� =2) = 0:0333 and� = 0:0005 [curve
(I)], 0.03 [curve (II)], and 0.5 [curve (III)]. (c) Verification of (19) for� = 0:0005;� = (� =2) = 0:0333 component 1. (d) Verification of (19) for� = 0:5;
� = (� =2) = 0:0333 component 30.

3) Example 3: The last example considers a longer impulse
response (30 taps going from to
in steps of , unit norm) and a highly correlated input
signal. The remaining parameters are unchanged unless explic-
itly stated. The input signal is a unit-variance autoregressive
process with an eigenvalue spread of 32.22 [16]. The step size
was large ( ) in order to test the model in
a very demanding situation.

Fig. 13 shows these results. Fig. 13(a) shows the MSE be-
havior. There is a small mismatch during the transient phase of
adaptation and should be expected for such large. Otherwise,
the model predicts the algorithm behavior very well. Fig. 13(b)
shows the mean weight behavior. The large weight fluctuations
for large are evident again. Fig. 13(c) and (d) verify (19).
Fig. 13(c) is for the first vector component (largest in magni-
tude). Fig. 13(d) is for the 30th vector component (smallest in
magnitude). The behavior of is much more dependent
on the input signal fluctuations, especially for such large step

sizes. Thus, as seen in Fig. 13(d), this mismatch should be ex-
pected. This example represents a very extreme case. Note also
that the analytical model is quite robust to large deviations from
the assumptions used to derive the theory.

VII. CONCLUSION

This paper has presented a statistical analysis of the least
mean square (LMS) algorithm when a zero-memory saturation
follows the adaptive filter output. The saturation nonlinearity
was modeled by a scaled error function. This structure can
model nonlinear effects in active noise and active vibration
control systems when transducers are driven by large amplitude
signals. This problem was first characterized as a nonlinear
signal estimation problem. The resulting mean-square error
(MSE) performance surface was studied in detail. New analyt-
ical expressions were obtained for the optimum weight vector
and for the minimum achievable MSE as functions of the
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system’s degree of nonlinearity. The new results were shown
to be useful for adaptive algorithm design and evaluation. The
LMS algorithm analysis with a nonlinearity in the adaptation
loop yielded deterministic nonlinear recursions for the mean
weight and MSE behavior for Gaussian inputs and slow adap-
tation. A simplified model was obtained for the case of white
inputs. Simple expressions for small step sizes have also been
derived for the steady-state mean weight and MSE behavior.
Monte Carlo simulations displayed excellent agreement with
the theoretical predictions for both small and large step sizes.
This agreement provides strong support for the approximations
used to derive the theoretical model.

APPENDIX A

PROOF THAT IS POSITIVE DEFINITE

The Hessian of is given by (40), shown at the bottom
of the page. At , (40) becomes (41), shown at the
bottom of the page.

Assuming is positive definite, (41) can be written as

(42)

where is symmetric and nonsingular. Thus, (42) is of the
form , where is nonsingular. The following result is
now used [22, p. 254].

If is positive definite and is nonsingular, then
is also positive definite.

Thus, if is positive definite, so is the Hessian.

The eigenvectors of

(43)

are and vectors orthogonal to it. Thus, has
eigenvalues equal to and one eigenvalue given by

. will be positive definite if all these
eigenvalues are positive.

From (41)

(44)

Using (2) and (10) in (44) yields

(45)

since has already been shown to be positive. Using (41), (2)
and (10) yields, after simple algebraic manipulations

(46)
which completes the proof that the Hessian is positive definite
for any finite .

(40)

(41)
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APPENDIX B

DERIVATION OF (28)

Post-multiplying (17) by its transpose and averaging on the
data yields

(47)

The expected values in (47) are now determined.
Expression 1: Assuming and statistically inde-

pendent

(48)

Expression 2:

(49)

Expression 3: This was already evaluated in (20) for
and statistically independent.

Expression 4: Assuming and statistically inde-
pendent,

(50)

Expression 5:

(51)

Expression 6: Assuming and statistically in-
dependent, this term can be evaluated using
the moment factoring theorem [3] since
is Gaussian. After some simple mathematical
manipulations, it can be easily shown that

(52)

Expression 7: This expectation contains a nonlinear term. It
can be written as

(53)

where ,
, and . Following

the same approach used in [18] and expanding
the results to the vector case, the higher order
moments can be broken into combinations of
second moments as follows:

(54)

where

(55)

The second moments in (54) are given by (56),
shown at the bottom of the next page.
Inserting (56) in (54) and (53) yields

(57)
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where is defined in (55). Thus

(58)

The numerator of the last term in (58) follows
directly from (20). To determine the numer-
ator of the first term, direct integration leads
to

(59)

Making and
in (59) and using (20), it

follows that (58) simplifies to

(60)

Substituting (20) and (60) in (57) and rear-
ranging the terms yields (61), shown at the
bottom of the page.

Expression 8:

(62)

Expression 9: Proceeding as in [18, App. A] and general-
izing the results to the vector case, it can be
shown that

(63)

where

(64)

Defining , ,
and using (24) leads to

(65)

where

(66)

The numerator of the second term of (66) is
given by (24). To evaluate the numerator of
the first term, the results in [18, App. A] can
also be used to show that

(67)

(56)

(61)
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Using and
in (67) and substituting

the result in (66) yields

(68)

Substituting (68) in (65) leads to

(69)

Finally, substituting the results of Expressions
1 through 9 in (47) yields the recursion for the
conditional weight correlation matrix given in
(28).
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