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Stochastic Analysis of the LMS Algorithm with a
Saturation Nonlinearity Following the Adaptive Filter
Output

Marcio H. Costa, José Carlos M. Bermud&ember, IEEEand Neil J. Bershad-ellow, IEEE

Abstract—This paper presents a statistical analysis of the least ~ Linear adaptive cancellation paths are the natural design
mean square (LMS) algorithm with a zero-memory scaled error  choice in linear system identification. However, numerous
function nonlinearity following the adaptive filter output. This actical adaptive systems have significant intrinsic non-
structure models saturation effects in active noise and active . - . . . "
vibration control systems when the acoustic transducers are Ilnearlfues in the cancellanon path. Such nonl|negr|t|es Ll
driven by large amplitude signals. The problem is first defined as Unavoidable and their effects on the overall adaptive system
a nonlinear signal estimation problem and the mean-square error behavior must be considered in a design situation. Important
(MSE) performance surface is studied. Analytical expressions application examples are active noise control (ANC) and active
are_obtamed for the optimum weight vector and the minimum vibration control (AVC) systems. ANC and AVC systems
achievable MSE as functions of the saturation. These results are . . . .
useful for adaptive algorithm design and evaluation. The LMS include acoustlcallme_c_hamcal paths. Signal converters (A/D
algorithm behavior with saturation is analyzed for Gaussian and D/A), power amplifiers, and transducers (speakers or actu-
inputs and slow adaptation. Deterministic nonlinear recursions ators) transform digital electrical signals into analog electrical
are obtained for the time-varying mean weight and MSE behavior. or mechanical signals for proper cancellation [1]. System or
Simplified results are derived for white inputs and small step secondary path nonlinearitiesan become important nonideal

sizes. Monte Carlo simulations display excellent agreement with ; . .
the theoretical predictions, even for relatively large step sizes. The effects in ANC and AVC systems [4], [S]. The nonlinearity

new analytical results accurately predict the effect of saturation Can be caused by overdriving the electronic circuitry or the

on the LMS adaptive filter behavior. speakers/transducers in the secondary path, for example.
Index Terms—Adaptive filters, adaptive signal processing, least In [5], Bernhardet al. brlefly dISCU§Sed nonlln.ear effect; In
mean square methods, transient analysis. ANC systems, but no adaptive algorithm behavior analysis was

presented. In [4], Snyder and Tanaka propose modeling a non-
linear primary path with a neural network nonlinear controller
in the AVC system. Again, no analysis was presented for algo-
DAPTIVE algorithms are applicable to system identifitithm behavior. Most practical ANC and AVC systems contain
cation and modeling, noise and interference cancellingpnlinearities in the secondary path. Therefore, it is of great in-
equalization, signal detection and prediction [1]-[3]. Mogerest to determine the effect of such nonlinearities on the adap-
adaptive system analyses assume nonlinear effects cantiy@ algorithm. Such analysis is unavailable in the open litera-
neglected and model both the unknown system and the adaptiwe. Several researchers have studied the statistical behavior of
path as linear with memory. Linearity simplifies the mathethe LMS algorithm with nonlinearities applied to the correlation
matical problem and often permits a detailed system analysegltiplier. Representative examples are [6]-[15]. These results
in many important practical circumstances. However, mogannot be modified to explain algorithm behavior with a non-
sophisticated models must be used when nonlinear effects kimearity at the adaptive filter output.
significant to the system behavior (i.e., amplifier saturation).  This paper investigates the statistical behavior of the system
in Fig. 1. The functiory(y) is a zero-memory saturation nonlin-
earity. Stochastic analysis of this system can provide important
insights into nonlinear secondary path effects upon ANC and
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Fig. 2. Nonlinear optimal filtering problem.

> LMS

x(n) is assumed stationary, zero-mean, and Gaussian with
variances?2. The measurement noisén) is stationary, white,
zero-mean, Gaussian, with varianeg and uncorrelated with
any other signal. The saturation nonlinearity is modeled by the
nonlinearity but remains unimodal. The optimum weight vectacaled error function
is a scaled version of the Wiener weight for the linear case. ’

Deterministic nonlinear recursions are derived for the mean gly) = / =20 g, 1)
weight and mean square error (MSE) behaviors of the LMS 0
adaptive algorithm for Gaussian inputs and slow adaptation. Tﬁﬁ , . .

LMS algorithm introduces a multiplicative bias in the converge € s%/s_tem S deg_ree Of_ nonlinearity is controlled by the param-
mean weight vector (compared with the optimum solution). .”%era in (1) and is defined as

Fig. 1. Block diagram of the nonlinear adaptive system.

degree of nonlinearity is shown to affect the algorithm behavior - o2 1 .
and the achievable level of cancellation. Monte Carlo simula- P=-—t = —W? Ry, W° (2)
tions display excellent agreement with the theoretical predic- 2 max {059} g
tions.
where
R, = E{X(n)XT(n)} autocorrelation matrix of the
[I. ANALYSIS OF THE MSE SURFACE input vector;
Consider initially the nonadaptive system shown in Fig. 2. o variance ofd(n);

This block diagram corresponds to a nonlinear mean-square esnax {059 } = (r/2)c?*  maximum variance of,(n) ob-
timation problem [16, Sec. 7-5]. The sequed(e) is estimated tained by taking the limit of (1)
in the mean square sense by a nonlinear function of the reference asy — oo.

signalz(n). The properties of the MSE surface as a function dfquation (2) expresses the ratio of the powewdin) (ideal
the system’s degree of nonlinearity is studied here for Gausstutput of W for the linear case) to the maximum available

inputs. power in y4(n), which is the cancelling signal. Note that
lim,2 _oo[9(y)] = v andlim,2_o[g(y)] = o/ (7/2)sgn(y).
A. Analysis Model Hence, the behavior agf(y) can be varied between that of a
) i i linear device and that of a hard limiter by changinty The
The notation for Fig. ZT'S as follows. effects of very large nonlinearities (— 0) can be studied by
W = [wg wy -+ wi_,] Response  of gcalingg(y) by a constant such as/o, A € R*. This artifice
the unknown 4ids the attenuation facterin the limit as sigma approaches
- system. zero. This paper studies the algorithm behavior §6g) in
W = lwo wr -+ wy-] Linear  filter (1) that models the degrees of nonlinearity of most interest
weight vector. iy practical applications. Results for very large degrees of
(n) Reference nonlinearity can easily be obtained from the results presented
signal. here by carrying the effect of /o throughout the derivatioAs

X(n) = [z(n)z(n—1)---z(n—N+1)]* Observed input

data vector. B. MSE Performance Surface

d(n) Primary signal. ] o o
2(n) Measurement The error signal in Fig. 2 is given by
noise.
y(n) Output of the e(n) = d(n) + z(n) — ys(n)
linear fi!ter. =W X(n)+z2(n)—g [WTx(n)] . (3)
9(y) Saturation non-
linearity.
Yg(n) Nonlinearity 2n this case,max {aig} = (7/2)A? and (2) becomes)? =

output. (r/2)(03/ max{o? }) = (1/A%)We" R, W®
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Fig. 3. Mean-square error performance surface for different degrees of nonlin8arity= [0.707 0.707]; 62 = 1; 2 = 10~°; eigenvalue spread @&....
equal to 24. (a) MSE contour fof? = 103, (b) 2 = 0.01. (c)»? = 0.1. (d) % = 0.5.

Squaringe(n) obtained from Fig. 2 and taking the expected The last expectation can be obtained from [18, (40)Hfpr=
value yields bi(n) =1andb = WTR,, W as

T
T E {92 [WTX(”)]} = o% arcsin <%) . (6)
3 {62 (”)} - {X(”)XT(R)} vk {22 (n)} Combining the above results into (4) ygi:IdS an analytical ex-
" 2WOTE () X ()} pression for the MSE surface

=207 {g WX ()] X(n)} [y =we" .

—2E {g [W"X(n)] 2(n)} {=E{e(n)} =W Ry W —

+E{g* [W'X(n)]}. (4) VEW T R 1

x W° R W + o2 arcsin W Res W +0?
. . . . . T g d T T 5 g..
The first three and the fifth expectations in (4) are easily WTR, W + o2
evaluated using the statistical propertiesagh), z(n), and (7)
d(n). Thus, E{X(n)XT(n)} = R, E{*(n)} = o2, . ) )
E{z(n)X(n)} = 0, and E{g[WTX (n)]z(n)} = 0. The Equation (7) reduces to the MSE expression for the linear
remaining terms are expectations of functions of zero-me&fS€ ag? — oo [3]. Fig. 3 shows examples of the MSE surface
jointly Gaussian variables. The fourth expectation can far different degrees of nonlinearigy?. Notice that the surface
obtained from [17, (A19)] fob, = 0, 0, = o, ¢ = 1/o, and deforms as)? increases, but appears to remain unimodal. This
o2 = WTR..W. Thus ! important result will be demonstrated in the next subsection.

Yy TL .

C. Stationary Points

1 R, is assumed positive definite, which is a reasonable as-
E{g[W"X(n)] X(n)} = - EoeW. (5)  sumption for most practical systems [3]. Differentiating (7) with
\/p WTR,, W +1 respect td¥, equating the result to zero, and denotifigas the
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finite values of W that satisfy the resulting equation, it can be 14

easily shown that
1.35}

(1+ LT R
(C%ZWTRM VV+1)
(FWT R, W) 1.25

WI We=cW?. (8) 1.3

1/2

LW R W+

Note that the multiplier: in (8) is a real scalar for any finite ¢ 12
We andW. Thus,I¥ is a scaled version 6# . This resultis in
agreement with the result derived in [19] for a single perceptrc 1.15
SubstitutingeW° for W in (8) and using (2) yields

1.1

2.2
1
we = — LW ORI
ot GEEE '
Equating the scalar multiples in both sides of (9) yields 1 : y . .

0 2 4 6 8 10

Degree of nonlinearity
AEn?2 41
1T T- (10)
¢ 2¢2n2 + 1 Fig. 4. Optimum weight vector multiplicative bias as a functiom&f

which shows that must be positive. Squaring (10) and solving 0 ; . ; ,
for ¢ yields the four solutions

1 1
C1,2,3,4 = :l:\/]_ — W + 4—774 + 1. (11)

It is easy to verify that the only solution satisfyinge RT is

1 1
=3/1—-—— — 4+ 1. 12
c \/ 57 + pp + (12)

Equation (12) shows that

Excess MSE (dB)

_aol i
T o 1 / 1 o
~50 * ‘ ' *
corresponds to the only finite point for whight /oW = 0. 0 2 4 6 8 10

. . . Degree of nonlinearit
Appendix A presents a mathematical proof that the HesSian 9 y

VQ[S(W)] is pps_itive definite aw = W. Thus, (13) porr_e— Fig. 5. Steady-state excess MSE relative to the linear dasg ¢ 02) as a
sponds to a minimum (7). Fig. 4 shows the multiplicative function of 2.

biasc for a large range ofi*.
Setting” = W in (7) and using (13) yields an expressiofyy(,)) and is adjusted with the LMS algorithm. Thus,

for the minimum MSE W(n) = [wo(n) wi(n) - wy_i(n)]T.
2,2
Emin=0"4 |1 — \/22—2—1 + i? arcsin <202777+1> A. Mean Weight Behavior
n cn . . . L
- et The weight update equation for the LMS algorithm is given
x W Ry, W°. (14) by
Again, asn® — 0, (14) reduces to the linear case optimum W(n+1) = W(n) + pe(n)X(n) (15)

solutioné,,,;, = o2. Fig. 5 shows the excess MSE (the additional
loss in cancellation level due to the nonlineagity) relative to theherey. is the adaptation step size, and
linear caseuwin — %) as a function ofy? for W° R,,W° = 1.
Figs. 4 and 5 show the significant impact of the nonlinearity on e(n) =d(n) + z(n) —y,(n)
. . . ; 4
the achlevable gancellatlon level as compared with the bias of =W X(n) + 2(n) — g [WT()X(n)] . (16)
the optimum weight vector.
Using (16) in (15) yields

[ll. ANALYSIS-LMS ALGORITHM TRANSIENT BEHAVIOR

This section analyzes the transient LMS algorithm be- W(n+1) = W(n)+ p{WX(n) + 2(n)
havior for Fig. 1. The weight vector is time-varying —g[WT(n)X(n)] } X(n). (17)
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The expected value of (17) is obtained in two steps. First, tBe Mean Square Error Behavior

expectation is taken conditioned &ri(n), leading to the recur-
sion
E{W(n +1)|W(n)}
= W(n)+ pE {X () X (n)|W(n)} W°
+ pE{z(n) X (n)[W(n)}

—wE {g[WT(m)X(m)] X(m)|W(n)}.  (18)

For sufficiently small., the first conditional expectation on the
right-hand side of (18) can be approximated [20], [21] by

w

Squaring (16) and taking the conditional expectation given
(n) yields

E{*(n)|W(n)}
=W E{X(n)XT(n)|W(n)} W°
+2W° E{z(n)X (n)|W(n)}
—2W? E {g [WT(n)X(n)] X(n)|W(n)}
+E{Z(n)|[W(n)}
—2E {z(n)g W (n)X (n)] [W(n)}
|

+E{g* [WE(n)X(n)] [W(n)}. (23)

E{X(n)XT(n)]W(n)} = E{X(n)X"(n)} = Re. (19) The first expectation has been evaluated in (19). The second
and the fifth expectations are equal to zero beca(sgis zero

(18) is zero since(n) is statistically independent df (). The  in

third conditional expectation is [see (5)]

E{g [W'(n)X(n)] X(n)|W(n)}
1

(20). The fourth one is equal t@?. The last term follows

directly from (6) by replacind?” with W (n). Thus

E{g* W)X (n)] |W(n)}
= o2 arcsin < W) ReaW ()

(24)

).

= R W (n). (20) WT(n)R.W(n)+ o2
\/ LWT(n) Ry W(n) +1
Substituting (19), (20), and (24) in (23) and rearranging the
Substituting (19) and (20) into (18) yields terms yields
2
E{W(n+ 1)|W(n E{Em)|W(n)} = -
{w( W (n)} \/U—gWT(n)RmW(n)—i—l
1 T
= Rao X WO RyoW(n)
\/pW (TL)RTTW(TL) +1 o e < WT(TL)RMCW(TL) )
g ar n
X W(n) + pRaosW. (21) W (n)ReaW(n) 4 02

Since the joint probability density function of the vectéi(n)

+ W RpuW° + o2 (25)

is not known, the expected value of (21) can only be approXihe evaluation of the expected value of (25) olé(n) is not

mated. The following approximation is used:

a simple task because the density function of the weight vector

is not known. It can be approximated by

E{W(n+1)}

_ 1

V& EAW T () Rea W ()} +1
x E{W(n)} + pRyW°

R.’L‘.’L‘

~
~

I—p

I—p L
| AR E (W)W ()} + 1
x E{W(n)} + pR,.W°

R.’L‘.’L‘

(22)

where W (n) and W (n)R,,W(n) have been approximated
by their expected values.[{r stands for the trace of the ma-
trix. Note that (22) reduces to the mean weight equation for the
linear case as? — oo. An approximate recursive expression
for E{W (n)W ™ (n)} will be found in the next subsections.

2
\/#E {WT(n) Ry W (n)} + 1
X WO Ryw E{W(n)}

€)= E{(n)} = -

E{WT(n)RyoW(n)}
E{WT(n)R,,W(n)} + o2

+ W RpuW° + 02
2

\/ Lt [Ryu B {W (n)WT(n)}] + 1
X W Ry, E{W(n)}
tr [Reo E {W(n)WT(n)}]
[Roa EAW (n)WT(n)}] + 02

ol o 2
+ W Ry WO o2,

+ o2 arcsin <

+ o2 arcsin
tr

)

(26)
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Ass? — oo (linear case), (26) converges to the MSE expressidar studying the statistical behavior of the LMS adaptive algo-

for the linear case [3]:

&(n) = W° RyuW° 4 02 — 2W° Ry, E{W(n)}

rithm in the system of Fig. 1.

IV. SIMPLIFIED MODEL-WHITE SIGNALS AND SLOW

+tr [Rea E{W(R)WT(R)}]. ADAPTATION

(27)
The analytical model derived above can be specialized for
a white input signal by setting.., = o21. However, further

C. Weight Correlation Matrix simplifications are possible for white inputs and very small

Evaluation of (22) and (26) requirds{W (n)WT(n)}. A re- Thg importance of _such a simplifie_d model is twofold_: i) The
cursion for the conditional weight correlation matrix is derived/hite input case with small step-size represents an important
in Appendix B as (28), shown at the bottom of the page. T@@ar? of practlca_l applications, mainly in system |dept|f|cat|on,
expectation of (28) ovel (n) represents a formidable math-2nd ii) the analytical model reduc;es to spala_r recursions. These
ematical task. Approximate expressions can be obtained usftf§ €asy to handle and lead to interesting insights into the al-
numerous different approaches. The following approximatio§€fithm behavior. The white-input-smatl-algorithm behavior
preserve information about the first and second moments of 1 Serve as a baseline for other cases. Larger step sizes speed
adaptive weights in the dominant terms of (28) while keepir§f® convergence butv_wth an increase in steady-state cancellation
the mathematical problem tractable. These approximations feYel- Signal correlation can slow-down convergence.

a stochastic model of the adaptive algorithm behavior are supConsideraz(n) white and . sufficiently small so that the

ported (even for reasonably large valuegpby the simulation effects of weight fluctuations can be negl_ected in (22). Thus,
results presented in Section VI R,. = 021 and (22) can be further approximated by

W(n)WT(n) = E{W(n)WT(n)} + terms iny? o2
W Rex PV () = U [Rea W ()W () A SR W) + 1
=1tr [Re E {W(n)W7T (n)}] + terms ing? y E{W(n(;} T oW (31)
W(n) = E{W(n)} +terms iny .
W (n)Rpw WO R W ()W (n) R,
= E{WT(n)} ReoWRoo E {W(n)W"(n)} Reo
+ terms ing?. (29)

Consider the initialization weight vectd¥ (0) = 0. From (31),
E{W (1)} = po2W? in this case. Thusz{W(n)} is collinear
with W¢ at the first iteration. MoreoverE{W (n)} will al-
ways follow the direction ofi¥’¢ since the term multiplying
Neglecting terms i for k > 1 in (29) and lettingK (n) = E{W(n)}in (31) is a scalar. Hence, (31) can be written as
E{W(n)WT(n)} yields (30), shown at the bottom of the next

page. Equations (22), (26), and (30) form the analytical model E{W(n)} = k(n)W°forall n (32)
E{Wn+ D)W (n+DW(n)} = Wn)WT(n) + uW(n)W Ryp + pRue WWT(n)

- a RpuW(n)W7T(n) — a W ()W () Ry

\/$WT(n)RmW(n) +1 \/o_gWT(n)RmW(n) +1
+ 1202 Ry + 202 Rug WOW® Ry + 12W" Ry WO Ry
n 212WT () Ry WO Ry W (n)WT(n) R,

0% [LWT(n)Rp W (n) +1]%°
22 [WT(n)RmW(’Rm + Ryu W ()W Ryy + RWWOWT(n)Rm}
[LWT(n) Ry W (n) + 1]
) WT(n)Rpe W (n)
2 2( TL Racac
+ pfo” arcsin <WT(n)RmW(n) n 02)
2 2 T

n 1 R W (n)W L (n) Ry (28)

(HWE0)Rea W (n) +1) | 2WE ()R W () + 1
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and the recursive equation becomes scalar. Substituting (32BinceR,... positive semi-definite [3JW 1 R,.,W,, > 0.2 Thus,
(31) and using (2) leads to it is clear from (35) that¥,, = aW°, wherea € R*. Substi-
tuting aW° for W, in (35), solving fora € R, and using (2)

o2 ields
k(n+1) = |1 - p—e—te | k(n) + po?.  (33) V¢
(n+1) W e O (n) + po (33) 1
Woo = lim E{W = —W° 36
Applying the same assumptions to (26) and using (2), R0 (Win)y V1-—n? (36)

W(0) = 0 andE{W (n)} = k(n)W? leads to
which shows that={1¥(n)} converges to a scaled version of
£(n) = 2w we [1 _ 2 k(n) the unknown system'’s response for Gaussian input signals. The
* 7?k2(n) +1 identification error caused by the nonlinearity increaseg as
2k (n) ) 1. This _steady—st:?\te error cannot be reduced by reducing the
Wﬂ +oz. adaptation step size. A;? — L, E{W(n)} generated by the
(34) LMS algorithm grows without limit. Equation (36) has no sta-
tionary points forp? > 1. This multiplicative bias occurs be-

Equations(32)—(34) determié{W (n)} and E{e¢%(n)} for ~Cause the instantaneous approximation of the MSE used to de-
all » when the adaptive filter is initialized & (0) = 0, the rive the LMS algorithm update equation does not consider the

1
+— arcsin <
n

input signalz(n) is white, and the step size is small. nonlinearity effect.
Notice from (2) that)? = 1 establishes a power threshbld
V. STEADY'STATE ALGOR'THM BEHAV'OR (InaX{qu} = (7{’/2)0’2) AbOVe thIS threshold, the adapt've

branch (including the nonlinearity) cannot provide sufficient

This segtion studies the_limi_ting behavior of the conver_gesqgnm power to cancel the power in the desired sigiia) (i.e.,
LMS algorithm. The determination of the steady-state algorithfRe adaptive algorithm is not able to increase the filter gain suffi-

behavior from (22), (26), and (30) requires numerical method§enyy to overcome the nonlinear saturation). Hence, the adap-
However, using the assumption of very small weight fluctugye fiiter gain increases without bound.

tions (compared with their mean values), very simple analytical, addition, notice that as? — oo (toward the linear case),
expressions that are useful for evaluation and design PUrPOeS .  and (36) reduces to the steady-state mean converged
can be determined. It is then assumed that, ... W(n) = weight vector for the linear case.

lim,, ., E{W(n)} = W, for the steady-state analysis.

B. Steady-State MSE

An approximate expression for the steady-state MSE be-
havior is determined by replacind (») with the steady-state

A. Mean Weight Steady-State Behavior

Assume algorithm convergencesas— oco. Replacing (n)
with W, in (22) yields

3positive definiteness ak ... is required for the singular case of= 0

4t can be readily shown that the threshaldx{o? } = (7/2)c7 is valid
even ifg(y) in (1) is scaled by a nonzero real constant.

1
Woo = WO\/_QWOERTTWM + 1 (35)
g

K(n+1) = K(n) + pE{W(n)}W° Ry, + nRpu WOE {WT(n)}
r R, K(n) — r
(St [Rp K(n)] + 1) (Str [Rpe K(n)] + 1

)1/2 K(n)R.,

2 2 2 o170t 27570% o
+p O—szw +2N Ra;a;W w Ra;a; + w Ra;a;W Ra;a;
. 22 E {WT(n)} RywW O Ryw K (n) Ry

0% (Lt [Rpn K (n)] +1)%°

202 [E {WT(0)} RawW Ry + R E{W (n)} W Rpp + Roe W E {WT(n)} Rm}

(0_12” [RacacK(TL)] + 1) 1/2

tr[Ren K (n)]
[Ran ()] + 2 ) Har

N 212 Ry K(n) Ry
(Ltr[Rea K(n)] + 1) (Ztr [Ren K (n)] + 1)

2 2 :
arcsin
+ pto <tr

o7 (30)
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Fig. 6. Weight biasx (W. =
function of n=.

xW) caused by the LMS algorithm as a Fig. 7. Steady-state excess MSE for the LMS algorithm as a functigi.of

LMS algorithm presuming the system linear. Such is the case
mean weight vector expression (36) in (26). After some simpig active noise control systems, for example. The nonlinear
algebraic manipulations effect on the MSE surface adds to the minimization of the

. . 5 MSE using a stochastic gradient algorithm. The total devi-
,}E{}og(”) = ,}EEOE{C (n)} ation from the linear case combines the nonlinear effect on
o7 o1 s ) the MSE surface and the EMSE (39) resulting from using
=W ReeW <ﬁ aresin (") — 1) +oz. 37 3 stochastic gradient algorithng(») remains bounded as
n? — 1, even though the adaptive filter weights diverge. This
The first term in (37) is the effect of the nonlinearity on thgehavior is due to the nature of the nonlinear saturation. It
LMS algorithm steady-state MSE for small As 7> — 0, g easily shown thay(y) V(@ [2)oert(y/ov/2). Thus,
lim,,—o £(n) = o2 (the minimum MSE for the linear LMS lim,, o0 g(¥) (n/2)o, which leads to the bounded
algorithm with slow adaptation). Equations (36) and (37) shoMg|inearity output and bounded MSE.
how nonlinearity affects the linear LMS algorithm steady-state
behavior. These expressions must also be compared with the re-
sults obtained for the MSE performance surface to determine

the weight vector bias and the excess MSE. These results ar&his section presents some simulation examples in support
significant because the nonlineariy-) is usually inherent to of the assumptions used to derive the theoretical models. Some

the system. representative plots have been selected from a large set of re-

VI. SIMULATION RESULTS

The LMS multiplicative weight bias is obtained from (13)
and (36) as

2

1/2
] W =kW.

2n
(1= n)y/1+ 4t
(38)

Asn? — 0(linear case)s — 1. Wheny? — 1, x andW, grow

Weo =
-2t + 32 -1

without bound. Fig. 6 shows the fast increase in the converglo%

multiplicative weight bias as a function gf.

sults.

1) Example 1:ConsiderW? [0.4130 0.4627 0.4803
0.4627 0.4130]T, W W° = 1, z(n) white with o2 = 1 and
measurement noise(n) with 2 = 10~°¢. Simulations are
presented for three step sizes (normalized with respect to the
linear LMS stability limit piax = 2/(tr[R.])). Step sizes

H1 = (//Lmax/5)v H2 = (//Lmax/]-o)a and H3 = (//Lmax/]-oo)
gve been used to evaluate the models for large, moderate, and

small . In addition,»?> = 0.0005, 0.05, 0.3, and 0.5 have been

The steady-state excess MSE (EMSE) of the LMS aIgorithrﬁeIeCted to illustrate the model accuracy for small, moderate,

relative to (14), is obtained from (14) and (37) as

1 ) 5 ) 02772
EMSE= ¢ — |arcsin(n®) — arcsin | —5——
2 2?11
2
b 2}W0TRWWO (39)
Vein? +1

and large degrees of nonlinearity. Different valuesnpdfare
used for weight and MSE behaviors to avoid superimposed
curves in single plots.

Fig. 8(a)—(c) compares the simulated mean weight behavior
with the analytical predictions using (22) and (30). Each plot
presents the results fgf = 0.0005, 0.3, and 0.5 and a singie
The vector components were selected at random. The remaining

with ¢ defined in (12). Fig. 7 shows the steady-state EMSE faomponents have similar behavior. The analytical model is ac-
0 < n? < 0.5and normalized signal powelﬂ/(oT R,,W? =1). curate, even forrelatively large step sizes. The steady-state mean
The impact of the nonlinearity must be compared with theeight behavior, predicted by (36), is very accurate, even for the
linear case. This is because many practical systems use ltrgey. in Fig. 8(a). The predicted steady-state valuesfgin)
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Fig.8. Example 1E{1V(n)} forn? = 0.0005 [curve (1)], 0.3 [curve ()] and 0.5 [curve (1I1)]. Plots (a), (b), and (c) for different valueg ddimulation—ragged
curves. Theory—smooth curves. &Y ws(n)} for 1 = (max/5) = 0.08. (b) E{wi(n)} for gz = (fmax/10) = 0.04. () E{ws(n)} for pus =
(#max/100) = 0.004.

by (36) are 0.480, 0.574, and 0.679. Note that the weight fluchosen at random to conserve space. All other components show
tuations increase with?. This behavior is probably due to thesimilar behavior. The lines connecting the points are used for
saturation that clips the adaptive filter output signal for largetarity only. Fig. 10(a) and (b) verify the accuracy of (32)—(34)
7?. This clipping results in a larger error signal and to a largéor white inputs and smalk. Fig. 10(a) and (b) use the same
weight update at each iteration. signals and parameters as in Figs. 8(c) and 9(e), respectively.
Fig. 9(a), (c), and (e) show the simulated MSE and the theBigs. 8 and 9 show that increasing is more significant to the
retical predictions using (26) and (30). Each figure shows thrésvel of cancellation (steady-state MSE) than to the converged
curves, corresponding t¢ = 0.0005, 0.05, and 0.5. Differentweight vector. The weight vector behavior fgr = 0.05 is very
plots are shown for different step sizes. Fig. 9(a) was obtaineldse to the behavior fof> = 0.0005 and, hence, is not shown.
by averaging 1000 runs. Five hundred runs were averaged to G the other hand, the steady-state MSE varies nearly by 30 dB
tain Fig. 9(c) and 9(e). The analytical model matches the simukes,? increases from 0.0005 to 0.05. This is mainly due to the
tions very well in all cases, even for the relatively lafge- 11;.  distortion of the MSE surface, as demonstrated in Section II-B.
The steady-state MSE values [which were predicted by (37)] are2) Example 2: This example repeats Example 1 for a corre-
—59.8dB, —33.8 dB, and—13.3 dB. However, these values arelated input signal. Thus, all the parameters, vectors, dimensions,
clearly accurate only for small step sizes. Fig. 9 shows that thed signal characteristics are the same as in Example 1, unless
predicted steady-state values for the simplified model are clos¢herwise stated. The input signa(n) is a unit-variance au-
to the simulation ag decreases. toregressive process obtained from a white Gaussian process so
Fig. 9(a), (d), and (f) verify the accuracy of approximatiotthat the input vectorX (n) has an autocorrelation matrik,.,
(19) for differenty. andn?. Three vector components have beewith eigenvalue spreag = 10.9 [16].
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Fig.9. Example 1: Left column: MSE fa? = 0.0005 [curve (1)], 0.05 [curve (I1)] and 0.5 [curve (I11)]. Simulation-ragged curves. Theory-smooth curves. Right
column: Verification of (19) fom? = 0.0005, 0.05, and 0.5 (lines joining point only for clarity)) E{ X (n) X T (n)W (n)}; (X)E{X(n)XT(n)} E{W(n)}.

(@) MSE forps = (ftmax/3) = 0.08. (b) n* = 0.0005; t1 = (Kmax/3) = 0.08; component 1. (C) MSE fofts = (fmax/10) = 0.04. (d) n? = 0.05;

f2 = (Bmax/10) = 0.04; component 2. (€) MSE fqis = (ftmax/100) = 0.004, (f) 2 = 0.5; g3 = (#max/100) = 0.004; component 3.
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Fig. 10. Example 1: Verification of the simplified model. (&fws(n)}. Theory obtained from (33). (b) MSE with theory obtained from (33) and (34). All
parameters and data identical to Figs. 8(c) and 9(e)(a)s(n)} for i = (pmax/100) = 0.004. (b) MSE foru = (fmax/100) = 0.004.
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Fig. 11. Example 2ZE{W(n)} for n? = 0.0005 [curve (1)], 0.3 [curve (Il)] and 0.5 [curve (lII)]. Plots (a), (b), and (c) for different valuesyof
Simulation-ragged curves. Theory-smooth curvesEgvi (n)} for g1 = (fmax/5) = 0.08. (b) E{wz(n)} for o = (fmax/10) = 0.04. (c) E{ws(n)}
for iz = (ftmax/100) = 0.004.

Figs. 11 and 12 verify the analytical model using recursiofated input signals. The same conclusions are also valid as from
(22), (26), and (30). The model accuracy is preserved for corexample 1.
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Fig.12. Example 2: Left column: MSE fg@# = 0.0005 [curve (1)], 0.05 [curve (I1)] and 0.5 [curve (I11)]. Simulation-ragged curves. Theory-smooth curves. Right
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column: Verification of (19) fom? = 0.0005, 0.05, and 0.5 (lines joining point only for clarity)) E{ X (n) X T (n)W (n)}; (X)E{X(n)XT(n)} E{W(n)}.
(@) MSE forps = (ftmax/3) = 0.08. (b) n* = 0.0005; t1 = (Kmax/3) = 0.08; component 2. (C) MSE foftz = (fmax/10) = 0.04. (d) n? = 0.05;
f2 = (Bmax/10) = 0.04; component 3. (€) MSE fqis = (ftmax/100) = 0.004, (f) 2 = 0.5; g3 = (Hmax/100) = 0.004; component 1.
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Fig. 13. Example 3: Algorithm behavior for highly correlated inputs and large step sizes.32.22. Simulation-ragged curves. Theory-smooth curves. (a)
MSE behavior. (b) Mean weight behavior. (c) and (d) Verification of (18).E{X (r)XT(n)W (n)}; (X)E{X(n)XT(n)} E{W(n)}. (a) MSE forp =
(Hmax/2) = 0.0333 andn? = 0.0005 [curve (1)], 0.05 [curve (I1)], and 0.5 [curve (II)]. (F{w1(n)} for g = (pmax/2) = 0.0333 andn® = 0.0005 [curve

(1], 0.03 [curve (11)], and 0.5 [curve (lI1)]. (c) Verification of (19) foy? = 0.0005; 1t = (Kmax/2) = 0.0333 component 1. (d) Verification of (19) for> = 0.5;

# = (Mmax/2) = 0.0333 component 30.

3) Example 3: The last example considers a longer impulsgizes. Thus, as seen in Fig. 13(d), this mismatch should be ex-
response (30 taps going from? = 0.252 to w3, = 0.103 pected. This example represents a very extreme case. Note also
in steps of—0.005, unit norm) and a highly correlated inputthat the analytical model is quite robust to large deviations from
signal. The remaining parameters are unchanged unless exjlie-assumptions used to derive the theory.
itly stated. The input signal is a unit-variance autoregressive
process with an eigenvalue spread of 32.22 [16]. The step size
was large { = pimax/2 = 0.0333) in order to test the model in
a very demanding situation. This paper has presented a statistical analysis of the least

Fig. 13 shows these results. Fig. 13(a) shows the MSE bmean square (LMS) algorithm when a zero-memory saturation
havior. There is a small mismatch during the transient phasefoliows the adaptive filter output. The saturation nonlinearity
adaptation and should be expected for such largetherwise, was modeled by a scaled error function. This structure can
the model predicts the algorithm behavior very well. Fig. 13(bhodel nonlinear effects in active noise and active vibration
shows the mean weight behavior. The large weight fluctuationsntrol systems when transducers are driven by large amplitude
for largen? are evident again. Fig. 13(c) and (d) verify (19)signals. This problem was first characterized as a nonlinear
Fig. 13(c) is for the first vector component (largest in magnsignal estimation problem. The resulting mean-square error
tude). Fig. 13(d) is for the 30th vector component (smallest IMSE) performance surface was studied in detail. New analyt-
magnitude). The behavior afi;o(n) is much more dependentical expressions were obtained for the optimum weight vector
on the input signal fluctuations, especially for such large stgmd for the minimum achievable MSE as functions of the

VIl. CONCLUSION
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system’s degree of nonlinearity. The new results were shownThe eigenvectors of
to be useful for adaptive algorithm design and evaluation. The 12 tir0riroT pl/2
LMS algorithm analysis with a nonlinearity in the adaptation M =al + bRZWOW? Ry (43)
Ioop yielded determ|n|§tlc nonllnear.rec.ursmns for the me%r}eRifWo and NV — 1 vectors orthogonal to it. Thusd has
weight and MSE behavior for Gaussian inputs and slow adap- ; ) :

. L ; N — 1 eigenvalues equal ta and one eigenvalue given by
tation. A simplified model was obtained for the case of white BT B We. M will be positive definite if all these
inputs. Simple expressions for small step sizes have also been * * T P

derived for the steady-state mean weight and MSE behavi%'rgenvalues are positive.

Monte Carlo simulations displayed excellent agreement withFrom (41)
the theoretical predictions for both small and large step sizes. 2eW°" R, W°
This agreement provides strong support for the approximationg = R 3/2
used to derive the theoretical model. 0 (W ReaWo +1)
2
+ 2¢2 T 1/2 2 T ’
APPENDIX A (2 W RpuWo +1) 7 (WO R, Wo +1)
- (44)
PROOF THAT V2£(W) |'s POSITIVE DEFINITE _ _ _
The Hessian of(W) is given by (40), shown at the bottomusmg (2) and (10) in (44) yields
of the page. AW = c¢W?, (40) becomes (41), shown at the B 2cn? 2
bottom of the page. “= (22 + 1)3/2 + (2202 + 1)1/2(2n2 + 1)
AssumingR,,. is positive definite, (41) can be written as 9 0 45)
= >

. . 2,2 1/2

V(W) = 1) {al + bRYPWOW R R (42) et +1)

sincec has already been shown to be positive. Using (41), (2)
whereR%,? is symmetric and nonsingular. Thus, (42) is of thand (10) yields, after simple algebraic manipulations

form CTAMC, whereC is nonsingular. The following result is dctt 4+ 422 + 2

T
= bW R, W° = 0
now used .[22, p.. ?54]. N . _ y=a+ (@ + 122 + 1) >
If A is positive definite and” is nonsingular, then (46)
CvAC is also positive definite. which completes the proof that the Hessian is positive definite
Thus, if M is positive definite, so is the Hessian. for any finite >.
2
V(W) = 373 | Ree (WWOT + WOWT) Ros
02 (LWTR,,W +1)
QW Rypu W 2
T 2( 1 T 3/2 T 2 T 1/2 1 T rE
02 (LEWTR,,W +1) (ZWTR,, W +1)"" (5WTR,,W +1)
~ 6W° R..W N 12W TR, W + 852
ot (AWTIR,W +1)"7 ot (ZWTR,W +1)*% (LWTR,,W +1)°
X RosWWTR,,. (40)
- 2W Ry W° 2
V(W) = 2 c - 57 +— " Ve R
o2 (SWT R, We +1) (LW R, Wo+1) "7 (S W R, Wo +1)
4c 6EW° Ry, W°

+

o (EWTR,Wo + 1) ot (SWT R, Wo 4 1)

1264 W Ry WO + 8¢202
ot (22 W Ry We +1)% % (SWoT RyyWo +1)°
— ARy + bRy WoW R (41)

Ry WoW Ry,
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APPENDIX B Expression 4: Assuming/(n) and.X (n) statistically inde-
pendent,
DERIVATION OF (28) E {ZQ(H)X(H)XT(HNW(H)}
Post-multiplying (17) by its transpose and averaging on the 2 ((n)XT 9
data yields = B{ZmIW )} BLX ()X )W ()} _”ZR’E;))
E{W(n+ D)W n+ D)W (n)} = W(n)W*(n)
(1 Expression 5:
T - ~ ot v e ~T
o W B X X ) E {z(n)W X(n)X(n)X (n)|W(n)}
i = E (=)W} E{W X(m)X () X" ()W (n) }
o W)W B {X ()X ()W () }] —0 51)
+ 1 [W(n)E {z(n) X (n)|W(n)}] Expression 6: AssumingV (n) and X (n) statistically in-
r (2) T dependent, this term can be evaluated using
oy the moment factoring theorem [3] singén)
T
+p [ W(n) B {2(n) X" (n)[W(n)} is Gaussian. After some simple mathematical
L manipulations, it can be easily shown that
= [E{g W (m)X(n)] X(n)[W(n)} W (n)] E {X(n)XT(n)WOWOTX(n)XT(n)|W(n)}
— (3) T
. -~ ~ = 2R WOW® Ryp+ W RpuWRy. (52
—p | E{g [WT(n)X(n)] X(n)|W(n)} WT(n) _ _ . : : 2
Expression 7: This expectation contains a nonlinear term. It

- can be written as
4)

112 | E{20)X ()X ()| W (n)} E{g [WT )X ()] W X ()X ()X T W () |
= E {g(y1)y2Y3Y5' } (53)
2 where yi(n) = WT(n)X(n), ya(n) =

’ NN \ We' X(n), andYs(n) = X(n). Following
+out | B {Z(”)W X(n)X (”)‘XT(””W(”)} the sarr(1e)approac£1 u)sed in [(18)] and expanding
the results to the vector case, the higher order
(6) moments can be broken into combinations of
% second moments as follows:

E {g(y1)u2Y3Ys" } = E{yrya} E{u1Y3} E {11Y5" } A()
+ [E {m1y2} E{Y3Y5'} + E {y. Y3}

——)

+u? |E {X(n)XT(n)W"W"TX(n)XT(n)|W(n)

r (7
= . x E{wYy'} + E {12Ys} B {unYy' }]
—2u? E{g[WT(n)X(n)]W° X(n)X(n)XT(ﬂ)IW(”)} E{ng:())yl)} o -
- (8) where
202 | E {2(n)g [WE(n)X (n)] X(n)X T (n)|W (n)} Alyy) = E {yi"’g(y;)} _W.E {ylg(yl)}_ (55)
i E{yi} E{y2}’
(9 The second moments in (54) are given by (56),
, — -~ = shown at the bottom of the next page.
+1? | E{g? [WHm)X ()] X()XT(m)[W(n)}| . (47) Inserting (56) in (54) and (53) yields
The expected values in (47) are now determined. b {g WEmXm)we X(H)X(H)XT(HNW(H)}
Expression 1: Assumin®’(n) and X (n) statistically inde- =W ()R W° Rm,W(n)WT(n)
pendent X Rop A (W ()X (n)|W(n))
E{X(n)XT(n)|W(n)} ~ Rap (48) WT(n)E {g [WT(n)X (n)] X(n)|W(n)}
Expression 2: * {( T(n)X(n))* |W(n)}

E{zn)XT(n)[W(n)} =0 (49)

B T o ol
Expression 3: This was already evaluated in (20)16fn) (W (n)RyaW° Ryy + Rypx W(R)W° Ry,
and X (n) statistically independent. + Ry WOW T (n) Ry (57)
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whereA(-) is defined in (55). Thus
A(WT0)X ()W ()
E{(WF(n)X(n) )39 [WE )X ()] W (n)}

E{Wrmxm)* W}
E{g[WT<n>X<n>] X)W (n)}
E{(Wr(m)xX(n)* |W(n)}

The numerator of the last term in (58) follows
directly from (20). To determine the numer-
ator of the first term, direct integration leads
to

Bty ., By
(B 1) (B )

Makingy = W™ (n)X (n) and E{y*|W (n)}
= WT(n)R..W(n)in (59) and using (20), it
follows that (58) simplifies to

A(WE(n)X ()W (n))
1
= _ . 60
0% (LW (n) Ry W (n) +1)* (©0)

wt
-3

. (58)

E{y’g(y)} =

(59)

Substituting (20) and (60) in (57) and rear-
ranging the terms yields (61), shown at the
bottom of the page.

Expression 8:

E{z(n)g W (n)X(n)] X(n)X " (n)|W(n)} =0. (62)

Expression 9: Proceeding as in [18, App. A] and general {g

izing the results to the vector case, it can be
shown that

E{g*(y)YaYs } = E{Y2Y }E {d*(y1)}
+ E{yY2} E{11Yy" } B (y1) (63)

1385

where

Bln) = E{lyf} E{fgif(]zfl)} Bl (yl)}] - 64
Defining y1 = WT(n)X(n), y» = X(n),
and using (24) leads to

E{g* [WH(m)X(n )] X ()X (n)|W(n)}

O’2 arcsin ( )Rwa(TL)
- (et 27 %o
+ Roe W ()W (n) Ry B(WT(n) X (n)|W (n))

(65)

where

B (W ()X (n >|W< )
B{(Wm)X(n)" g* W) X(m)] [W(n) |
{( )X () W)}
B VX )] W)}
B{(W(n)X ()’ W(n)}

The numerator of the second term of (66) is
given by (24). To evaluate the numerator of
the first term, the results in [18, App. A] can
also be used to show that

E 2
y*t =E{y} {02 arcsin <E{y2{7m>
n 2F {yQ} }
(B 4 1) 2280 4

(67)

(66)

E{yly2} WT( )E{
E{yYs} = E{X(n)X
E{yYs} = E{X(n)XT

E{YsYL} = E{X(n)X

/\HA
S
S
—
Il
|
]
8

X)XT(n)[W(n)} We = WE(n)Rya W°
)W (n)} W(n) =
n)[W(n)} We =

R, W(n)

Ry W° (56)

E{g W )X (m)] W X ()X ()X ()| W () }
W (1) R W Ry + Rua W()W Ry + Roo WOW ™ () Re
(LWT(n) Ry W (n) + 1)
3 W (n) Ry W Ry W (n)WT(n) R,
02 (LWT(n) Ry W (n) +1)*

(61)



1386 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 7, JULY 2001
Usingy = WT(n)X(n) and E{y?|W(n)}  [14] S. Koike, “Convergence analysis of a data echo canceller with a
_ WT(n)RmW(n) in (67) and substituting stochastic gradient adaptive FIR filter using the sign algorithEBEE
. : Trans. Signal Processingol. 43, pp. 2852-2862, Dec. 1995.
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Trans. Signal Processingol. 44, pp. 1175-1183, May 1996.
T [16] A. Papoulis,Probability, Random Variables and Stochastic Processes
B (W (n)X(n)|W(n)) 3rd ed. New York: McGraw-Hill, 1991.
_ 2 [17] J.J. Shynk and N. J. Bershad, “Steady-state analysis of a single-layer
N T 2 T : perceptron based on a system identification model with bias terms,”
(HEWT(n)Ree W(n)+1) \/FW (n) Ry W(n)+1 IEEE Trans. Circuits Systvol. 38, pp. 1030-1042, Sept. 1991.
68 [18] N.J.Bershad, P. Celka, and J. M. Vesin, “Stochastic analysis of gradient
(68) adaptive identification of nonlinear systems with memory for gaussian
data and noisy input and output measuremelEEE Trans. Signal Pro-
cessingvol. 47, pp. 675-689, Mar. 1999.
Substituting (68) in (65) leads to [19] A. Feuer and R. Cristi, “On the optimal weight vector of a perceptron
with gaussian data and arbitrary nonlinearitfgEE Trans. Signal Pro-
cessingvol. 41, pp. 2257-2259, June 1993.
[20] S.C.Douglasand W. Pan, “Exact expectation analysis of the LMS adap-
E {g [ )X (n )] )X T()\W(n )} tive filter,” IEEE Trans. Signal Processingol. 43, pp. 2863—2871, Dec.
1995.
— o2arcsin WT(”>RW (n) R [21] O. J. Tobias, J. C. M. Bermudez, N. J. Bershad, and R. Seara, “Mean
WIn)R,. W (n)+o2 weight behavior of the Filtered-X LMS algorithm,” froc. IEEE Conf.
9 Acoust., Speech, Signal Proced998, pp. 3545-3548.
+ [22] G. Stranglinear Algebra and its Applications New York: Academic,
(LW (n)RpaW (n +1)\/%WT ()R W () + 1980.
x Ry,W (W n)R,.,.. (69)
Finally, substituting the results of Expressions Marcio H. Costa received the B.E.E. degree
1through 9 in (47) yields the recursion for the from Universidade Federal do Rio Grande do Sul
conditional weight correlation matrix given in (UFRGS), Porto Alegre, Brazil, in 1991 and the
M.Sc. degree in biomedical engineering from Uni-
(28). versidade Federal do Rio de Janeiro (COPPE/UFRJ),
Rio de Janeiro, Brazil, in 1994. Currently, he is
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at the Universidade Federal de Santa Catarina,
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