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Abstract—This paper presents a new statistical analysis of the
affine projection (AP) algorithm. An analytical model is derived
for autoregressive (AR) inputs for unity step size (fastest con-
vergence). Deterministic recursive equations are derived for the
mean AP weight and mean-square error for large values of (the
number of adaptive taps). The value of is also assumed large
compared to the algorithm order (number of input vectors used
to determine the weight update direction). The model predictions
display better agreement with Monte Carlo simulations in both
transient and steady-state than models previously presented in the
literature. The model’s accuracy is sufficient for most practical
design purposes.

Index Terms—Adaptive filters, adaptive signal processing,
statistical analysis, system identification.

I. INTRODUCTION

THE least mean squares (LMS) adaptive algorithm and
the normalized least mean squares (NLMS) algorithm

are among the most often used algorithms in adaptive signal
processing applications. However, their convergence rates are
significantly reduced for nonwhite (highly correlated) inputs
[1]. Acoustic echo cancellation is one important application
with such input signal characteristics. The affine projection
(AP) algorithm was proposed by Ozeki and Umeda in 1984 [2]
as a solution to this problem. More recent works have studied
the AP algorithm as a link between NLMS and recursive least
squares (RLS) algorithms, and fast versions have been proposed
[3]–[6]. The AP algorithm updates the adaptive filter weights
in directions that are orthogonal to the last input vectors.
This update rule whitens an autoregressive (AR) (P) input and
increases convergence speed [7]. Thus, AP may be a better
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algorithm choice than LMS or NLMS for applications with
highly correlated input signals [8]. However, the AP algorithm
is computationally more complex and also results in a slightly
higher noise floor. The complexity cost has decreased in im-
portance as more advanced semiconductor elements have been
developed. Thus, complex signal processing algorithms have
become feasible for applications such as echo cancellation,
channel equalization, and noise cancellation.

This feasibility has enhanced the interest in analyzing the sto-
chastic behavior of the AP algorithm. However, quantitative sta-
tistical analysis is extremely difficult because of the underdeter-
mined least squares solution embedded in the algorithm. Refer-
ence [8] has presented a quantitative analysis of the AP algo-
rithm. The analysis is based upon an independent input signal
model originally proposed in [9] for the analysis of the NLMS al-
gorithm. However, the independent signal model cannot handle
the pre-whitening properties of the AP algorithm. Reference [10]
presented a quantitative analysis for AR Gaussian inputs. This
analysis follows the work in [7] for obtaining the solution of a
recursion for the weight error vector variances. The solution uses
previous results for the NLMS algorithm with white inputs. More
recently [11] presented a new statistical analysis for the behavior
of the AP algorithm for Gaussian AR inputs. Analytical diffi-
culties are avoided for the case of a large number of adaptive
taps compared to the AP algorithm order. This case allows an as-
sumption similar to the “independence assumption” [1]. The “in-
dependence assumption” has been used to analyze successfully
many adaptive algorithms, including the AP algorithm [1], [10].
More recently, [12] presented a unified analysis of the transient
behavior of a class of AP algorithms. The analysis is based on
energy conservation arguments. The results obtained in [12] are
quite general in that they do not assume a model for the input data
and are valid for any adaptation step size. The resulting expres-
sions are in terms of the statistics of the input data. Such a general
model may be used for the derivation of more specialized models
in the future. However, direct use in system design requires the
numerical estimation of the specific input statistics. The deriva-
tion of completely analytical models for special cases of interest
from the results in [12] is still an open issue.

This paper follows the work in [11], but is not limited to
Gaussian inputs1. The input signal is modeled as an AR process.
This is the most employed model for representing signals in
practical applications. The algorithm step size is unity. Though

1Initial results on this work have been presented in [15].
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nonunity step sizes are employed in many practical situations,
the unity step size leads to a scalar error signal, and permits a
more detailed analysis than for arbitrary step sizes [7], [10], [11]
when the error is a vector. For instance, the analysis in [12] holds
for any step size, but the derived model requires numerical es-
timations of complex input statistics. Unity step size yields the
fastest convergence of the AP algorithm. Hence, understanding
the algorithm’s performance in this case is of great interest in
its own right. Specializing the analysis for AR inputs and unity
step size allows the derivation of a complete analytical model
which is directly applicable to practical designs and provides
important insights into the AP algorithm behavior. Results in
[10] and new views of the input signals are used to determine
statistical properties of the decorrelated input signal. New sta-
tistical assumptions and approximations are used to evaluate the
mean AP weight vector and the mean-square error (MSE) be-
haviors. A simple analytical model is derived for a large number
of taps and for algorithm orders much smaller than the number
of taps. The new model requires no numerical estimations for
most practical applications and is able to predict the AP algo-
rithm statistical behavior with sufficient accuracy for most prac-
tical design purposes. A closed-form expression is determined
for the MSE behavior. Steady-state results are obtained as a limit
of the recursive transient model. Monte Carlo simulations show
good agreement with the theoretical predictions for design pur-
poses, during both the adaptation phase and in steady-state.

Scalars are denoted by plain lowercase or uppercase letters,
such as or . Vectors are all column vectors and denoted
by lowercase boldface letters, such as . Matrices are de-
noted by bold capital letters, such as . Sequences are denoted
by curl brackets around the variable name, such as . The
superscript denotes vector or matrix transposition. The letter

denotes time or iteration number.

II. SIGNAL MODELS

The adaptive system attempts to estimate a desired signal
which is linearly related to the input signal by the

model

(1)

where is the vector of the model
parameters and the random sequence is independent,
identically distributed (i.i.d.), zero-mean with variance , and
statistically independent of the random input sequence .

accounts for measurement noise and modeling errors in
(1).

The input sequence is assumed to be a zero-mean
wide sense stationary AR process of order and can be used
to model input signals for many practical applications. Thus,

is described by

(2)

where the sequence is drawn from a wide sense sta-
tionary white process with variance .

A set of consecutive samples of can be collected
in a vector equation. Let be a vector of samples of the
AR process described in (2). Thus

(3)

where the matrix is a collection
of past input vectors

and .
The least squares estimate of the parameter vector is given

by

(4)

where is assumed of rank .

III. AFFINE PROJECTION ALGORITHM

The AP algorithm can be formulated as the solution of an
underdetermined least squares problem subject to multiple con-
straints [1], [7]. The optimization problem can be stated as the
minimization of the Euclidian norm of

, where is the
adaptive weight vector, subject to the set of constraints

...

The solution of this optimization problem using the method of
Lagrange multipliers [1] leads to the AP weight update equation

(5)

where is the adaptive
weight vector, and

is the estimation error vector. The step size
is equal to one in the solution of the optimization problem

and is introduced in (5) only to permit some control of the algo-
rithm convergence behavior by the designer. Thus, using
leads the algorithm to perform nonorthogonal projections of the
weight error vector onto the subspace spanned by
the columns of .

Expressing the set of constraints and the error vector in vector
form yields

(6)

...

(7)

where is the vector of zeros.



1396 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 52, NO. 7, JULY 2005

Using the first row of (6) at sample instants it
can be easily verified that rows 2 through of (7) are equal
to zero. Thus, for the error vector is equal to

,2 and the error becomes a scalar [16, ch. 2].
When the input sequence is an AR process as in (2)

and (maximum convergence speed), it was demonstrated
in [7] that the AP algorithm updates the adaptive weight vector
in the direction of a vector given by

(8)

which is orthogonal to the past input vectors
, and that the weight update equation can be

written as3

(9)

where the scalar error signal is given by

(10)

The AP algorithm order is the number of input vectors
used to represent [number of input vectors in in
(5)].

IV. VECTOR AND STATISTICAL PROPERTIES OF VECTOR

The AP algorithm convergence properties depend upon the
correlation matrix . The structure and
the properties of in turn depend upon the vector and statis-
tical properties of . The following analysis uses assump-
tions similar to the “independence assumption” [1], which has
been used to analyze many stochastic algorithms.

Assumption A1: The adaptive algorithm order is assumed
sufficient to model the input AR process since is used in
both (3) and (8).

Assumption A2: The statistical dependence between
and can be neglected.

This assumption is more realistic for and is
justified as follows. Equation (3) shows an algebraic depen-
dence between and vectors .
Also, is of dimension . Consider

, the projection matrix onto
the subspace spanned by the columns of , and

, the projection matrix onto the or-
thogonal complement subspace. Then, can be decom-
posed as , where and

. Only is algebraically dependent
upon . Moreover, since is white, the average
energy of is equally distributed among its dimensions.
Thus, only the energy in creates a dependence between

and . This dependence can be neglected if ,
which is usually the case in systems with long impulse re-
sponses, since tends to be limited by algorithm complexity
considerations.

2Only for � = 1 the optimization constraints can be described by (6).
3Note that (9) corresponds to the update equation of the NLMS algorithm

with unity step size and input vector �(n).

Assumption A3: The vectors and are statisti-
cally independent.

This assumption is similar to the “independence assumption”
as applied to delay line adaptive filters with white inputs.
can be interpreted as a vector whose elements are estimates of
the white noise sequence .

This property is verified in the following and the form of
the correlation matrix is determined.
Substituting (4) in (8), and using (3) in the resulting expression
yields

(11)

Equation (11) shows that is orthogonal to the columns of
. This is a vector orthogonality and is valid for every and

for any realization of the input processes.
To determine the statistical properties of , note that

is a vector with power only in dimensions
of the -dimensional space. The vector contributes
the power in the remaining dimensions. Consider a given
iteration (a fixed value for ). The dimensions excited by
are different in general for each sample function of the adaptive
process because of the randomness of . This is equivalent
to each dimension being excited on average for each run (for
any given ) with of the power in . Thus, using
(11) and distributing the power equally in each dimension, the
autocorrelation matrix of can be written as

(12)

Equations (9) and (12) show that the AP algorithm with suffi-
cient order ( greater than or equal to the order of the input
process) and taps has a transient behavior similar to the
NLMS algorithm with taps and a white input.

Assumption A4: is a zero mean Gaussian random
vector.

V. MEAN WEIGHT BEHAVIOR

Defining the weight error vector, and
using (10), (9) can be written as

(13)

Pre-multiplying (13) by , and , using
(8) as , and using the property
demonstrated in (11) that , yields

(14)

(15)

(16)
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These properties were derived in [7] with sign changes due to a
different definition of the weight error vector 4. Properties
(15) and (16) yield

(17)

where .
Using (16), (17) and again as a function of and

in (13) leads to

(18)

where is the filtered noise sequence [7]

(19)

Under Assumption A35 and noting that
because is zero mean and independent of any other signal,
the expected value of (18) yields

(20)

Each element of the expectation in the r.h.s. of (20) has a nu-
merator given by and a denominator given by

. The components of in the numerator
affect only two out of terms in the denominator. Hence, nu-
merator and denominator can be assumed weakly correlated for
large values of . For ergodic inputs, this assumption is equiv-
alent to apply the averaging principle [13] as tends
to be slowly time-varying when compared to
for large values of . Hence, the following approximation is
used:

(21)

with given by (12).
is evaluated assuming that is a

jointly distributed Gaussian vector with negligible statistical
dependence between its components (estimates of a white
sequence). Thus, has a chi-square distribu-
tion with degrees of freedom. The value of
follows from the statistical properties of determined in
the previous section. Thus, [14]

(22)

4The weight error vector is defined asw �w(n) in [7].
5Note that Assumption A3 also implies independence of �(n) and v(n)

since v(n) = w(n) �w .

and direct integration leads to

(23)

where . Using (23) in (20) leads to

(24)

where the rightmost expression was obtained using
as determined in (12). Equation (24) is the recursion for the
mean weight error vector. Note that (24) establishes a conver-
gence condition as a function of . The mean weight
vector will converge to zero if , which leads
to the condition . Since is an integer, convergence
of the mean weight vector requires

(25)

The condition in (25) is a stability bound for the mean weight
vector. It establishes an upper bound for for a given number
of adaptive filter coefficients. This condition is verified in Fig. 1
for a system identification problem with randomly selected co-
efficients. The mean weight and the MSE behaviors are shown
for and [Fig. 1(a) and (c)], within the stability
region, and for and [Fig. 1(b) and (d)], which
violates (25). Fig. 1(a) and (b) shows the ensemble average (100
runs) of the squared norm of the mean weight vector. Fig. 1(c)
and (d) shows the ensemble average (100 runs) of the MSE. The
plots clearly show that the algorithm becomes unstable in the
second case, confirming (25). Fortunately, this stability condi-
tion does not represent a major concern for most applications,
since usually from practical design considerations.

VI. MEAN-SQUARE ERROR BEHAVIOR

A convenient expression for the MSE can be determined
as follows. Express (10) as a function of . Then, replace

using (14) and using (8). Next, use (15)
and (16) to express as a function of and

. Finally, use (19) and square the resulting expression
to obtain

(26)

The second term on the r.h.s. of (26) can be neglected in com-
parison with the other two terms as explained next. Assuming
that the algorithm has sufficient order (greater than P), in a
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Fig. 1. Verification of stability condition. (a) Efv (n)gEfv(n)g for N = 64 and P = 61, stable. (b) Efv (n)gEfv(n)g for N = 64 and P = 63,
unstable. (c) MSE for case (a). (d) MSE for case (b).

few iterations tends to the vector plus a small fluctua-
tion which is correlated with 6. Thus, can be consid-
ered weakly correlated with . Since is also assumed
statistically independent of , then is weakly corre-
lated with and the expected value can be approxi-
mated by

(27)

The expectation is zero because is zero-mean, since
is zero-mean. Thus, after simple manipulation, (26) can be
written as

(28)

where is the correlation matrix of the
weight error vector.

6This is the same reasoning that leads to Assumption A2 and to the whiteness
of �(n). The fluctuation in â(n) is the term that leads to the vector z (n),
which can be neglected for N � P .

The expected value of can be expanded using (19) as

(29)

Since is white ( for ) and
independent of , (29) becomes

(30)

Substituting (3) in (4), using Assumption A2 and the fact that
is zero-mean yields, after some algebra,

(31)

Using (31) in (30), gives

(32)
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Finally, substituting (32) in (28) yields

(33)

The first term in (33) is a function of the input statistics.
in the second term needs to be evaluated.

Post-multiplying (18) by its transpose and taking the expected
value yields

(34)

The second and fourth terms on the r.h.s. of (34) are easily
determined using Assumption A3, (21) and (23) as

and , respectively. Assuming
uncorrelated with , the third term on the r.h.s.

of (34) becomes

(35)

The second expected value in (35) is then determined using
the same assumption used in (20)–(23)

(36)

since . The same result is obtained for the seventh
term of (34).

The sixth term of (34) can be evaluated as

(37)

Since isassumedzero-meanGaussian(AssumptionA4),
third moments of its elements are equal to zero. Assuming also
that is uncorrelated with , straightforward cal-
culation shows that the second expectation in (37) equals zero.
The same conclusion also holds for the eighth term in (34).

The evaluation of the fifth term on the right-hand side (r.h.s.)
of (34) involves higher order statistics of the variables. Thus,
it is not simple to infer any correlation property as done in the

second moment calculations. To proceed with the analysis, two
approximations have been tried: 1) the same approximation used
in (21), in which multiplies the expec-
tation of the numerator; 2) the assumption that numerator and
denominator can be approximated by their mean values. It has
been verified through exhaustive simulations that the latter ap-
proach leads to better matching between the model and Monte
Carlo simulations. Thus

(38)

The first expectation in (38) is evaluated by direct integration
using (22)

(39)

The second expectation is evaluated in the Appendix, and is
given by

(40)

Using (39) and (40) in (38) yields

(41)

Finally, the last expectation in (34) is determined using again
the assumptions that is uncorrelated with and that

is uncorrelated with . Then

(42)

The first expected value in (42) is given by (32). The second
expectation is evaluated by direct integration using (22)

(43)

and the third expectation is simply . Thus

(44)
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Using these results in (34) yields a recursion for

(45)

Expressions (45) and (24), with given by (12), can
be substituted in (33) to recursively determine the MSE be-
havior. The matrix must be numerically
estimated from the input signal . However, assuming for
simplicity that all elements of have similar powers, it is
easy to show that is approximately given
by , which can be neglected when compared to
1 for . In this case, can be
neglected in both (45) and (33). The resulting model does not
require any matrix estimation and is as accurate as the complete
model for most practical purposes.

Since , the MSE expression (33) is a function of
. Defining the scalars

(46)

(47)

(48)

(49)

and using , (45) can be written as

(50)

Taking the trace of (50) and using the closed form solution
of (24) as a function of and (a deterministic quantity)
yields

(51)

As , the solution of (51) can be deter-
mined in closed form as

(52)

Using (52) in (33) with yields a closed form ex-
pression for the MSE.

VII. STEADY-STATE BEHAVIOR

Assuming convergence, the algorithm steady-state behavior
can be determined as the limit as of the analytical
model. As , it can be written that

. Also, from (24). Thus, taking the
of (50) yields

(53)

Equation (53) clearly shows that is a multiple of the iden-
tity matrix. Taking the trace of (53) yields

and thus

(54)

Using (54) and in (33) gives the expression for
the steady-state MSE

(55)

Equation (55) provides an expression for the steady-state
MSE of the AP algorithm. Note that the multiplier

is reduced as increases. Thus,
increasing reduces the steady-state MSE. This is another
good reason (besides computational complexity) to use
in practical designs. If and , the steady-state
MSE reduces to .
The factor may represent a significant increase in
steady-state MSE in comparison with simpler algorithms such
as NLMS. Using the arguments immediately after (45), the
term can be neglected in (55)
when compared to 1, leading to . This latter
result agrees with the conclusion in [7] that the AP algorithm
leads to an increase in the noise floor by an extra term

. Moreover, since , the AP algorithm adds at
least 3 dB to this noise floor, due to the rightmost multiplier in
(55). This conclusion is in agreement with the result reported
in [12, eq.(22)].

VIII. SIMULATION RESULTS

The analytical model comprised of (24), (33) and (45) has
been tested in several different situations. This section presents
a sample of these results to illustrate the accuracy of the new
model. These results are representative of the results obtained in
all tested cases. is adjusted so that in all the examples.
The signal-to-noise ratio is given by
dB. The term has been neglected
in (45) and (33) in all the examples. Also, the ideal response

in each example corresponds to the first samples of the
measured acoustic response of a room shown in Fig. 2. The de-
rived model requires large and . Our simulation re-
sults have shown that the model provides good predictions of the
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Fig. 2. Impulse response w used in all examples. In each example, the first
N samples of this response are the elements of w .

Fig. 3. MSE: Input AR(1) Gaussian, a = �0:9, algorithm AP(2), N =

64; SNR = 60 dB. (a) Monte Carlo simulations (200 runs). (b) New model.
(c) Model in [10]. (d) Model in [11]. (e) Steady-state MSE predicted by (55).

algorithm behavior for greater than 40. This is a reasonable
value for most practical applications of the AP algorithm7. Also,

is a desirable practical condition for manageable com-
putational complexity and low steady-state MSE. The example
parameters reflect these conditions. These examples show that
this paper has advanced the stochastic analysis of the AP algo-
rithm to an extent which is sufficient for many practical appli-
cations. However, the present model does not predict the finer
details of actual performance as is most obvious from Figs. 7
and 10, shown later.

A. Example 1

The input is a Gaussian AR(1) process given by
, with white and Gaussian. Figs. 3–6

show, respectively, the MSE behavior for and
and and , and

7Typical values for acoustic impulse responses of a car cabin and and office
have 256 and 1024 samples, respectively [17].

Fig. 4. MSE: Input AR(1) Gaussian, a = �0:9, algorithm AP(5), N =

64;SNR = 60 dB. (a) Monte Carlo simulations (200 runs). (b) New model.
(c) Model in [10]. (d) Model in [11]. (e) Steady-state MSE predicted by (55).

Fig. 5. MSE: Input AR(1) Gaussian, a = �0:9, algorithm AP(2), N =

128;SNR = 60 dB. (a) Monte Carlo simulations (200 runs). (b) New model.
(c) Model in [10]. (d) Model in [11]. (e) Steady-state MSE predicted by (55).

Fig. 6. MSE: Input AR(1) Gaussian, a = �0:9, algorithm AP(9), N =

128;SNR = 60 dB. (a) Monte Carlo simulations (200 runs). (b) New model.
(c) Model in [10]. (d) Model in [11]. (e) Steady-state MSE predicted by (55).

and , all for dB. Fig. 7 shows the results cor-
responding to Fig. 5 for dB. The figures show the
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Fig. 7. MSE: Input AR(1) Gaussian, a = �0:9, algorithm AP(2), N =
128; SNR = 30 dB. (a) Monte Carlo simulations (200 runs). (b) New model.
(c) Model in [10]. (d) Model in [11]. (e) Steady-state MSE predicted by (55).

Monte Carlo simulation results (average of 200 realizations) and
the MSE behavior predicted by the new model. The MSE be-
havior predicted by the models in [10] and [11] are also shown in
the figures. Note that the new model provides the best prediction
of the algorithm behavior. This has been true in all cases tested.
The new model behavior predictions are clearly accurate for
most practical purposes. The match between theory and simula-
tion is excellent during steady-state and good during the initial
transient, where an S-type performance curve can be verified.
The theoretical model underestimates the MSE during the initial
transient and overestimates the MSE during the later transient.
Thus, the model provides a theoretical prediction that should
be sufficient for most design purposes. These plots confirm the
practical knowledge that AP convergence performance does not
improve in proportion to beyond the input signal’s order8.
For instance, compare Figs. 3 and 4. Similar convergence rates
occur. is sufficient for to be an excellent prediction
of the white noise . Thus, the algorithm is already working
with a white input. The effect of increasing decreases as is
increased. Comparison of Figs. 3 and 5 shows, as expected, that
convergence time increases with increasing .

B. Example 2

Consider an AR(2) input signal given by
with zero-mean white Gaussian,

which corresponds to a relatively wide-band signal (pole radius
equal to 0.59). dB, and . The sim-
ulation and theoretical predictions are shown in Fig. 8. Simu-
lation and theory are in good agreement, especially during the
initial transient and in steady-state. Note the small increase in
steady-state MSE as compared to Fig. 4. This is because the ex-
ample in Fig. 4 has somewhat smaller values for and for .

C. Example 3

The input is a narrow-band AR(2) signal (pole radius equal to
0.975) given by

8The input whitening properties of the algorithm disappear when the number
of past input vectors used in the AP algorithm is smaller than the order of the
input process. This case is not considered in this analysis.

Fig. 8. MSE: Input AR(2) Gaussian, a = [0:95 �0:35] , algorithm AP(9),
N = 64;SNR = 60 dB. (a) Monte Carlo simulations (200 runs). (b) New
model. (c) Steady-state MSE predicted by (55).

Fig. 9. MSE: Input AR(2) Gaussian, a = [�1:9114 �0:95] , algorithm
AP(3), N = 64;SNR = 60 dB. (a) Monte Carlo simulations (200 runs).
(b) New model. (c) Steady-state MSE predicted by (55).

Fig. 10. MSE: Input AR(2) Gaussian, a = [�1:9114 �0:95] , algorithm
AP(3), N = 64;SNR = 20 dB. (a) Monte Carlo simulations (200 runs).
(b) New model. (c) Steady-state MSE predicted by (55).

with zero-mean white Gaussian. and .
Simulation and theoretical prediction are shown in Fig. 9 for

dB and in Fig. 10 for dB. The theoretical
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Fig. 11. MSE: Input AR(3) Gaussian, a = [2:614 �2:5221 0:88155] ,
algorithm AP(9), N = 64; SNR = 60 dB. (a) Monte Carlo simulations (200
runs). (b) New model. (c) Steady-state MSE predicted by (55).

model predicts the algorithm behavior very well for the 60 dB
SNR case. Compare Figs. 4 and 9 and note in both cases that the
algorithm has approximately the same initial convergence rate
( dB after 200 iterations). However, the AR(2) case has a
significantly larger steady-state MSE due to the larger value of

. The slightly larger value of (62 against 60 in Fig. 4) is
not enough to compensate for the detrimental effect of the noise
filtering. Fig. 10 displays the S shape performance behavior for
lower SNR (20 dB) when the theory is less accurate during the
transient phase as discussed above.

D. Example 4

The input is a narrow-band AR(3) signal (pole radii equal to
0.9 and 0.99) given by

with zero-mean white Gaussian.
dB, and . The simulations and the-

oretical prediction are shown in Fig. 11. The theoretical model
predictions are again in good agreement with the observed al-
gorithm behavior. It is clear the increase in steady-state MSE is
due to the larger value of (compare with Fig. 4).

E. Example 5

This example considers non-Gaussian correlated input se-
quences. Two different cases are presented. First, the input
AR(1) process is given by with

zero mean uniform with variance
so that . dB, and .

Fig. 12 shows the Monte Carlo simulations of the MSE and the
behavior predicted by the new model. The steady-state MSE
predicted by (55) is also indicated in the figure. There is a very
good match between simulation and theory in both steady-state
and transient adaptation phases.

The second case presented uses an AR(1) input process given
by with obtained from a
squared Gaussian sequence with mean adjusted to zero and vari-
ance so that . dB,

and . Fig. 13 shows the Monte Carlo simula-
tions of the MSE and the behavior predicted by the new model.

Fig. 12. MSE: Non-Gaussian correlated input generated from z(n) zero
mean and uniform, a = �0:9, algorithm AP(2), N = 64;SNR = 60 dB.
(a) Monte Carlo simulations (100 runs). (b) Behavior predicted by the new
model. (c) Steady-state MSE predicted by (55).

Fig. 13. MSE: Non-Gaussian correlated input generated from z(n) squared
Gaussian with mean reduced to zero, a = �0:7, algorithm AP(5), N = 64;
SNR = 60 dB. (a) Monte Carlo simulations (100 runs). (b) Behavior predicted
by the new model. (c) Steady-state MSE predicted by (55).

The steady-state MSE predicted by (55) is also indicated in the
figure. As in the first case, a very good match can be verified
between simulation and theory in steady-state and during the
transient adaptation phase.

IX. CONCLUSION

This paper presents a new analytical model for predicting the
stochastic behavior of the AP algorithm for AR inputs and for
unity step size (fastest convergence). The analysis is based upon
both the vector and statistical properties of the algorithm vari-
ables. The analytical results provide new insights into the algo-
rithm behavior. It was shown that the transient behavior of the
AP algorithm with taps and an AR input is similar to that
of the NLMS algorithm with taps and a white input.
A theoretical stability limit was determined as a function of the
difference between the number of adaptive taps and the memory
of the AP algorithm . The steady-state MSE was also
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shown to depend on the difference . The new model re-
sults also agree with the result in [7] for : the noise
floor is increased by the factor , due the pre-whitening
behavior of the AP algorithm. For most practical applications,
the new analytical model does not require numerical estimation
of the input statistics. Monte Carlo simulations have shown that
the theoretical model is accurate for design purposes in both the
transient and steady-state.

APPENDIX

EVALUATION OF (40)

The second expectation in (38) can be written as

(56)

The th element of (56) is given by

(57)

Now, can be assumed weakly correlated with
the double summation in (57) for large , since each pair

affects at most out of the terms in
the double summation. Using this property and Assumption A3
yields

(58)

Separating the terms with and , the r.h.s. of (58)
is written as

(59)

Since from (12) for , (58) becomes

(60)

Since the distribution of is unknown, an approximation
must be determined for . Assuming equal fluctuations

about the mean for all components
(same variances), can be approximated by

(61)

where is the covariance matrix of , given by

(62)

Substituting this result in (61) yields

(63)

Using (63), the r.h.s. of (60) becomes

(64)

Since is stationary, for all
. Thus, it can be easily verified that

(65)

The expected value of is determined using (22):

(66)

Using (65) and (66) in (64), inserting the result in (60) and
noting that is the th element of leads
to the result shown in (40).
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