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Received 3 September 2007; received in revised form 10 December 2007; accepted 13 December 2007

Available online 23 December 2007

Abstract

This work presents a statistical analysis of the Least Mean Square (LMS) adaptive algorithm subjected to the existence

of a symmetric dead-zone nonlinearity at the adaptive filter output. Such configuration can be representative of low-cost

active noise control systems where the canceling signal drives a class B power amplifier or a nonlinear actuator. Recursive

deterministic equations are derived for the mean coefficient and mean-square error behaviors assuming Gaussian signals

and slow adaptation. The steady-state algorithm behavior is determined for given filter parameters and degree of

nonlinearity. Monte Carlo simulations and laboratory experiments are presented which corroborate the theoretical results.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Practical adaptive identification and control de-
sign techniques usually tend to ignore the presence
of nonlinearities in real applications [1,2]. The main
reason for that seems to be the difficulty in
obtaining theoretical models capable of predicting
the performance of the adaptive algorithms under
the influence of such nonlinearities.

Static (e.g. dead-zone or saturation) and dynamic
(e.g. backlash or hysteresis) nonlinearities present in
several physical systems are often neglected for

simplicity. They occur in most mechanical, hydrau-
lic, electronic and biological systems [3]. Among the
static nonlinearities, the dead-zone has been widely
employed to model physical phenomena that pre-
sent negligible dynamics when compared to the
system time constants. These phenomena are
characterized by a negligible response to a range
of input signal amplitudes [4].

Dead-zones can originate from different causes.
Important examples are the dry friction or stiction
in electromechanical and hydraulic systems (such as
in servomotors and servovalves), the physical
imperfections in sensors and actuators [2], or the
cut-in voltage in low-cost power amplifiers (cross-
over effect) [5]. Although dead-zones can be avoided
to some extent by careful electronic or mechanical
design, sometimes this effort can excessively in-
crease design and manufacturing costs. In some
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situations, however, the presence of a dead-zone is
unavoidable, such as in biological systems [6,7].

Dead-zone nonlinearities have been mostly stu-
died in the robust control literature. It has been
recognized that actuator and sensor nonlinearities
are among the key factors limiting both the static
and dynamic performances of feedback control
systems [3]. The most straightforward way to cope
with dead-zone nonlinearities is to cancel them by
employing their inverse functions. However, this
can be done only when the dead-zone nonlinearity is
exactly known. In general its parameters are
unknown and may vary in time and with operating
conditions [8].

Several approaches have been proposed to deal
with dead-zone nonlinearities, which include the use
of fuzzy logic and neural networks. Unfortunately,
such approaches are usually associated with a large
computational complexity. In addition, ‘‘industrial-
ists often view these techniques with some appre-
hension and distrust’’ [1]. As a result, linear
adaptive control techniques provide an attractive
solution whenever minimum satisfactory perfor-
mance objectives can be guaranteed.

Two important application systems that are
affected by dead-zone nonlinearities are active noise
control (ANC) and active vibration control (AVC)
systems [9–11]. The nonlinearity is introduced by
vibrational transducers (generally piezoelectric or
loudspeakers) and/or by low-cost power amplifiers.
These elements process the adaptive filter output1 to
generate the acoustic or vibrational waves required
to interfere destructively with the field caused by the
original source of disturbance. Nowadays, such
systems are available in many commercial products,
especially in avionics and in the vehicle industry.
For these systems to be competitive, they should
employ inexpensive transducers and amplifiers,
especially because most of them are multichannel.
Besides economical considerations, energy efficiency
is a major concern in power amplifier design,
frequently leading to the use of nonlinear class B
power amplifiers.

Few works in the literature provide analytical
descriptions of the behavior of adaptive filters when
affected by nonlinearities. Nevertheless, recent
studies have shown that nonlinearities can have a
significant impact on the adaptive filter performance
[12–15]. Thus, it is of great interest for the designer

to have theoretical models capable of predicting the
system performance based on approximated bounds
of the nonlinear characteristic [16]. The influence of
a dead-zone on the RLS adaptive filter behavior
has been studied in Ref. [17]. However, to the
best knowledge of the authors, there is no
available model for predicting the performance of
the widespread Least Mean Square (LMS) adaptive
filter family with dead-zone output nonlinearity
[18–20].

This work studies the effects of a symmetric
secondary-path dead-zone nonlinearity on the
stochastic performance of LMS-based adaptive
systems. The analysis presented here considers a
memoryless nonlinear secondary-path. The analysis
can be readily extended to incorporate a linear
filtering operation to the secondary-path in the light
of Ref. [13].

The paper is organized as follows. Section 2
presents the analyzed topology and the dead-zone
analytical description and modeling. Section 3
provides an analysis of the mean weight behavior
of the LMS adaptive filter subjected to an output
dead-zone nonlinearity for Gaussian input signals.
Section 4 presents an expression for the mean-
square error (MSE) under slow adaptation condi-
tions. Section 5 presents a recursive equation for the
second-order moments required for the evaluation
of the MSE. Section 6 presents steady-state results.
Sections 7 and 8 present, respectively, simulation
and experimental results that corroborate the main
theoretical properties derived. Finally, Section 9
presents the main conclusions.

2. Dead-zone modeling

The studied system is presented in Fig. 1.
Assuming an ANC application, d(n) is the signal
to be canceled, y(n) is the output of the adaptive
canceler, e(n) is the error signal, z(n) is the
measurement noise, which is zero-mean with var-
iance rz ¼ E{z2(n)}, independent and identically
distributed and uncorrelated with the input signal.
The input signal x(n) is assumed stationary,
Gaussian, with zero-mean and variance rx ¼ E{x2(n)}.
The input and weight vectors are defined as x(n) ¼
[x(n), x(n�1), y, x(n�N+1)]T and w(n) ¼ [w0(n),
w1(n), y, wN�1(n)]

T, respectively, both with dimen-
sion N. The vector wo ¼ ½wo

0 ;w
o
1 ; . . . ;w

o
N�1�

T is the
impulse response of the unknown system. The
dead-zone nonlinear characteristic is represented
by the gDZ( � ) block. Its input–output relation is
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given by [3]

gDZ½yðnÞ� ¼

mr½yðnÞ � tr� for yðnÞXtr
0 for tloxðnÞotr
ml½yðnÞ � tl� for yðnÞptl

8><
>: , (1)

and depicted in Fig. 2, where mr and ml are the
angular coefficients of the right and left portions of
the nonlinearity, respectively. tr and tl are the right
and left limits of the dead-zone.

2.1. Dead-zone modeling

To facilitate the development of analytical
models, it is convenient to approximate the piece-
wise nonlinearity given by Eq. (1) by a continuous
and more mathematically tractable function (in
light of the Gaussianity of the input signals). The

dead-zone nonlinearity can be decomposed as [1]

gDZ½yðnÞ� ¼
mryðnÞ � gSAT½yðnÞ� for yðnÞo0

mlyðnÞ � gSAT½yðnÞ� for yðnÞ40

(
(2)

where gSAT( � ) is the saturation nonlinearity given by

gSAT½yðnÞ� ¼

mryðnÞ for 0pyðnÞotr
mlyðnÞ for tlpyðnÞo0

mrtr for yðnÞ4tr
mltl for yðnÞotl

8>>>><
>>>>:

. (3)

In general, neither the break-points (tl, tr) are
symmetrical about zero nor the slopes (mr,ml) are
equal [3]. However, nonlinearities encountered in many
applications (including biomedical and mechanical
systems) can often be approximated with success by
the symmetry conditions assuming mr ¼ ml and tr ¼
�tl. This approximation is especially good in the case
of class B amplifiers, where the dead-zone nonlinearity
is due to a complementary pair of transistors.

The error function has been successfully used
as an approximation of a saturation-type non-
linearity in deriving analytical models for the LMS
family [12–15]. Assuming symmetry and unit gain
(mr ¼ ml ¼ 1 and tr ¼ �tl ¼ t), the dead-zone
nonlinearity can be approximated by

ĝDZ½yðnÞ� ¼ yðnÞ � g½yðnÞ� ¼ yðnÞ �

Z yðnÞ

0

e�z2=2s2 dz,

(4)

where y(n) is the input to the dead-zone nonlinearity
and g( � ) is the error function. The s parameter in
g( � ) is given by

s2 ¼
2

p
t2, (5)

so that Eq. (4) approximates the nonlinearity in Fig. 2.

3. Mean weight behavior

The LMS update weight equation is defined as [19]

wðnþ 1Þ ¼ wðnÞ þ meðnÞxðnÞ. (6)

From Fig. 1, the estimation error is

eðnÞ ¼ woTxðnÞ þ zðnÞ � gDZ½w
TðnÞxðnÞ�. (7)

Substituting Eq. (4) for gDZ [.] in Eq. (7) we obtain

eðnÞ ¼ woTxðnÞ þ zðnÞ � wTðnÞxðnÞ þ g½wTðnÞxðnÞ�.

(8)

ARTICLE IN PRESS

Fig. 2. Dead-zone nonlinearity: (a) hard and (b) soft approxima-

tion by the error function.

Fig. 1. Adaptive system.
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Using Eq. (8) in Eq. (6) and taking expectations
conditioned on the weight vector w(n) it comes to

Efwðnþ 1ÞjwðnÞg

¼ Ef½I� mxðnÞxTðnÞ�wðnÞjwðnÞg

þ mEfg½wTðnÞxðnÞ�xðnÞjwðnÞg þ mRwo, ð9Þ

where R ¼ E{x(n)xT(n)} is the input vector autocor-
relation matrix. Neglecting the statistical dependence
between the coefficient and input signal vectors [21],2

the first term in Eq. (9) becomes

Ef½I� mxðnÞxTðnÞ�wðnÞjwðnÞg ffi ½I� mR�wðnÞ. (10)

The second expectation in Eq. (9) can be obtained
as in Ref. [14], Eq. (20), resulting in

Efg½wTðnÞxðnÞ�xðnÞjwðnÞg

�
1

s2
wTðnÞRwðnÞ þ 1

� ��1=2
RwðnÞ. ð11Þ

Using Eqs. (10) and (11) in Eq. (9) and taking the
expectation over w(n), E{w(n+1)} can be approxi-
mated by

Efwðnþ 1Þg ¼ I� mRþ m
1

s2
trfRKðnÞg þ 1

� ��1=2
R

" #

� EfwðnÞg þ mRwo. ð12Þ

In deriving the expected value of Eq. (11) to obtain
Eq. (12) we have approximated wT(n)Rw(n) by its
expected value tr{RK(n)} where K(n) ¼ E{w(n)wT(n)}
is the weight vector correlation matrix. This approx-
imation, required for mathematical tractability, ne-
glects the fluctuations of the weighted norm of w(n),
(||w(n)||R, [22]), as compared to its mean value. It
becomes more accurate as the step size decreases and
the order of the adaptive filter increases. Eq. (12) is a
deterministic recursive model of the mean weight
behavior. In the particular case of white input signal
Eq. (12) reduces to

Efwðnþ 1Þg ¼ 1� mrx þ mrx

rx

s2
TkðnÞ þ 1

� ��1=2� �
� EfwðnÞg þ mrxw

o, ð13Þ

where Tk(n) ¼ tr{K(n)}.
Note that even after all the approximations, the

mean weight model still keeps effects of the second-
order moments of w(n), which are imposed by the
nonlinearity.

4. Mean-square error

Squaring Eq. (8) and taking the expected value of
the result, conditioned on w(n), leads to

Efe2ðnÞjwðnÞg ¼ woTRwo þ Efz2ðnÞg

þ 2woTEfg½wTðnÞxðnÞ�xðnÞjw nð Þg

� 2wTðnÞEfg½wTðnÞxðnÞ�xðnÞjwðnÞg

þ Efg2½wTðnÞxðnÞ�jwðnÞg

þ wTðnÞRwðnÞ � 2woTRwðnÞ. ð14Þ

Using the same approximations and assumptions
used in evaluating Eq. (11), the last expectation in
Eq. (14) results in [14]

Efg2½wTðnÞxðnÞ�jwðnÞg � s2 arcsin
wTðnÞRwðnÞ

wTðnÞRwðnÞ þ s2

� �
.

(15)

Using Eqs. (11) and (15) in Eq. (14) we obtain

Efe2ðnÞg ¼ woTRwo þ rz þ trfRKðnÞg � 2woTREfwðnÞg

þ 2
1

s2
trfRKðnÞg þ 1

� ��1=2
� ½woTREfwðnÞg � trfRKðnÞg�

þ s2 arcsin
trfRKðnÞg

trfRKðnÞg þ s2

� �
. ð16Þ

Eq. (16) is a theoretical description of the mean-
square error evolution with time. For the white
input case Eq. (16) simplifies to

Efe2ðnÞg ¼ rxw
oTwo þ rz þ rxTkðnÞ � 2rxw

oTEfwðnÞg

þ 2rx
rx

s2
TkðnÞ þ 1

� ��1=2
� woTE wðnÞ

� 	
� TkðnÞ


 �
þ s2 arcsin

rxTkðnÞ

rxTkðnÞ þ s2

� �
. ð17Þ

Since both Eqs. (12) and (16) require the
determination of K(n) ¼ E{w(n)wT(n)}, this ex-
pected value is evaluated in the next section.

5. Second-order moments

Using Eq. (8) in Eq. (6), multiplying the re-
sulting expression by its transposed and taking the

ARTICLE IN PRESS
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dence assumption and is more valid for slow adaptation.
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expectation leads to

Efwðnþ 1ÞwTðnþ 1Þg

¼ EfwðnÞwTðnÞg þ m2Efz2ðnÞgEfxðnÞxTðnÞg

� mEfwðnÞwTðnÞgEfxðnÞxTðnÞg

� mEfxðnÞxTðnÞgEfwðnÞwTðnÞg

þ mEfwðnÞgwoTEfxðnÞxTðnÞg

þ mEfxðnÞxTðnÞgwoEfwTðnÞg

þ mEfwðnÞg½wTðnÞxðnÞ�xTðnÞg

þ mEfg½wTðnÞxðnÞ�xðnÞwTðnÞg

þ m2EfxðnÞxTðnÞwðnÞwTðnÞxðnÞxTðnÞg

þ m2EfxðnÞxTðnÞwowoTxðnÞxTðnÞg

� m2EfxðnÞxTðnÞwowTðnÞxðnÞxTðnÞg

� m2EfxðnÞxTðnÞwðnÞwoTxðnÞxT ðnÞg

þ 2m2Efg½wTðnÞxðnÞ�woTxðnÞxðnÞxTðnÞg

� 2m2Efg½wTðnÞxðnÞ�wTðnÞxðnÞxðnÞxTðnÞg

þ m2Efg2½wTðnÞxðnÞ�xðnÞxTðnÞg. ð18Þ

The solutions to the expectations in Eq. (18) can
be obtained in the same way as in Ref. [14], and
using the same assumptions and approximations
used for Eqs. (12) and (16), resulting in

Kðnþ 1Þ ¼ KðnÞ � mKðnÞR� mRKðnÞ

þ mRwoEfwTðnÞg þ mEfwðnÞgwoTR

þ m2rzRþ 2m2RwowoTRþ m2woTRwoR

þ 2m2RKðnÞRþ m2 trfRKðnÞgR

� 2m2RwoEfwTðnÞgR� 2m2REfwðnÞgwoTR

� 2m2woTREfwðnÞgR

þ
2m2

s2
1

s2
trfRKðnÞg þ 1

� ��3=2
� ½woTREfwðnÞg � trfRKðnÞg�RKðnÞR

þ 2m2
1

s2
trfRKðnÞg þ 1

� ��1

�
2

s2
trfRKðnÞg þ 1

� ��1=2

� RKðnÞRþ m
1

s2
trfRKðnÞg þ 1

� ��1=2
� ½KðnÞRþ RKðnÞ�

þ 2m2
1

s2
trfRKðnÞg þ 1

� ��1=2
� ½woTREfwðnÞgRþ REfwðnÞgwoTR

þ RwoEfwTðnÞgR� 2RKðnÞR

� trfRKðnÞgR�

þ m2s2 arcsin
trfRKðnÞg

trfRKðnÞg þ s2

� �
R. ð19Þ

Eq. (19) is a recursion for predicting the time
evolution of the second-order moments. For the
white input signal case, it reduces to

Tkðnþ 1Þ ¼ ½1� 2mrx þ m2ðN þ 2Þr2x�

� TkðnÞ þ m2ðN þ 2Þ

� r2xw
oTwo þ m2Nrxrz

þ 2mrx½1� mðN þ 2Þrx�w
oTEfwðnÞg

þ 2m2r2x
2rx

s2
TkðnÞ þ 1

� ��1=2

�
rx

s2
TkðnÞ þ 1

� ��1
TkðnÞ

þ 2mrx

rx

s2
TkðnÞ þ 1

� ��1=2
� ½mðN þ 2Þrxw

oTEfwðnÞg

þ ð1� mðN þ 2ÞrxÞTkðnÞ�

þ
2m2r3x
s2

rx

s2
TkðnÞ þ 1

� ��3=2
� ½woTEfwðnÞg � TkðnÞ�Tk nð Þ

þ m2rxNs2 arcsin
rxTkðnÞ

rxTkðnÞ þ s2

� �
.

ð20Þ

The complete analytical model for the behavior of
the LMS algorithm subjected to the dead-zone
nonlinearity in the secondary-path is composed by
Eqs. (12), (16) and (19).

The developed analysis makes use of the slow
adaptation assumption. Thus, as a further simplifi-
cation, approximated results can be obtained by
disregarding the terms multiplied by m2, except for
the driving term (m2rzR). The result of such
procedure is a very fast computational model for
small step sizes.

6. Steady-state behavior

This section describes the steady-state behavior of
the mean weight and mean-square error using the
derived theoretical models.

ARTICLE IN PRESS
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6.1. Steady-state mean weight behavior

Assuming convergence of Eq. (12) (limn-N

E{w(n)}ffilimn-NE{w(n+1)}) and neglecting the
fluctuations of w(n) about its mean value (slow
adaptation assumption) leads to

lim
n!1

EfwðnÞg

ffi 1�
1

s2
lim

n!1
EfwTðnÞgREfwðnÞg þ 1

� ��1=2" #�1
wo.

ð21Þ

Observing Eq. (21) it can be verified that

lim
n!1

EfwðnÞg ¼ qwo, (22)

where q 2 Rþ is a scalar. Using Eq. (22) in Eq. (21)
leads to the following relation:

Z2q4 � 2Z2q3 þ Z2q2 � 2qþ 1 ¼ 0, (23)

where

Z2 ¼
p
2t2

woTRwo. (24)

The expression 1/Z2 is called the system degree of
nonlinearity. Differently from the degree of non-
linearity defined in Ref. [14], here the system linearity
increases as Z2-N. The multiplicative factor q is
completely determined by the degree of nonlinearity.
It can be easily verified that q-1 as Z2-N, which
corresponds to the Wiener solution to the linear case.

Relation (23) is a biquadratic equation ([23],
p. 83). The sufficient condition for a root of Eq. (23)
to be a solution of Eq. (22) is that it must be positive
and real for all Z2A[0,N) (see Eq. (21)). Numerical
analysis of Eq. (23) demonstrates the existence of
only one solution. Its closed form can be easily
obtained using the symbolic calculation tools
available in data manipulation softwares. Fig. 3
presents q as a function of Z2.

From this analysis it can be concluded that the
steady-state mean weight vector is a scaled version
of the Wiener solution to the linear case.

6.2. Steady-state mean-square error behavior

An approximation to the steady-state excess
mean-square error (EMSE) can be obtained assum-
ing mean convergence of the coefficients (limn-N

E{w(n)}ffilimn-NE{w(n+1)}) and neglecting the
fluctuations of w(n) about its mean value (slow

adaptation assumption) in Eq. (16). As a result,

EMSE ¼ lim
n!1

Efe2ðnÞg � rz ffi nwoTRwo, (25)

where

n ¼ 1� 2qþ q2 þ
2qð1� qÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2q2 þ 1

p
þ

1

Z2
arcsin

Z2q2

Z2q2 þ 1

� �
. ð26Þ

The steady-state mean-square error is also a
function of the degree of nonlinearity as expected.
Fig. 4 presents the relation between the parameter n
and the degree of nonlinearity.

ARTICLE IN PRESS

Fig. 3. Steady-state coefficient multiplicative factor (q) as a

function of Z2.

Fig. 4. Steady-state MSE multiplicative factor (n) as a function

of Z2.
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7. Simulations

In this section, Monte Carlo simulations are
presented in order to verify the assumptions and the
accuracy of the derived theoretical models. Three
examples present comparisons between simulation
results and the theoretical predictions using the
analytical models described by Eqs. (12), (16) and
(19). Unless stated otherwise, all simulated examples
share the following common characteristics: the
input signal is zero-mean Gaussian with unit power
(rx ¼ 1). The additive measurement noise is zero-
mean, independent and identically distributed,
Gaussian and uncorrelated with the input signal.
Initialization was at w(0) ¼ [0 0 0y 0]T. The simu-
lated EMSE was obtained by averaging 500 runs,
resulting in a 99% confidence interval for a
variation of 70.73 dB ([24], p. 314). The used
step-size corresponds to mmax/100, where mmax is the
maximum step-size3 that allows adaptive filter
convergence for the linear case (the nonlinear
system maintains the same stability limit). The
dead-zone nonlinearity used in simulations is the
hard-type (Fig. 2). Only one every one hundred
samples is plotted in order to obtain smooth
simulation curves. The signal-to-noise ratio is
defined as SNR ¼ 10 log10(rx/rz).

Example 1. White input signal, rz ¼ 10�6, m ¼
0.0001, the plant is a real acoustic response with
128 coefficients (Fig. 5), t ¼ [10�10, 0.02, 0.1].

Example 2. Correlated input signal generated by a
first-order autoregressive model given by x(n) ¼
a1x(n�1)+u(n), with a1 ¼ 0.4 and ru ¼ E{u2(n)} ¼
0.84. rz ¼ 10�6, m ¼ 0.0003; t ¼ [10�10, 0.02, 0.1].
The plant impulse response is a Hanning window
with unit norm (woTwo

¼ 1) and 30 coefficients.

Example 3. Same set of parameters as in Example 2
but with a1 ¼ 0.7, ru ¼ 0.51 and m ¼ 0.0001.

Fig. 6 presents EMSE comparisons between
analytical models and Monte Carlo simulations
for Example 1. Three situations were visualized for
different degrees of nonlinearity. Analytical models
and simulation results are superimposed, demon-
strating the good results for the white case. From
these results it is clear the significant impact of the
dead-zone nonlinearity on the performance of the
adaptive filter, as well as the predicting capability of
the developed theoretical models.

Figs. 7 and 8 present results for the correlated
cases. Cases (b) and (c), for both figures, present a
very good match between simulations and theore-
tical models. Case (a) illustrates that transient
theoretical predictions loose accuracy for almost
linear conditions and correlated input signals.
However, steady-state results are always very
accurate.

Table 1 compares the simulated steady-state
weight multiplicative factor (||limn-Nw(n))||/||wo||,
where || � || is the squared norm operator) and the

ARTICLE IN PRESS

Fig. 5. Real acoustic impulse response.

Fig. 6. Excess mean-square error (EMSE) for Example 1. White

input signals with unit power, rz ¼ 10�6, plant with 128

coefficients (Fig. 5). (a) Linear case (t ¼ 10�10); (b) Z2 ¼ 3927

(t ¼ 0.02); (c) Z2 ¼ 157 (t ¼ 0.1). Only one in each 100 samples is

plotted in order to obtain smoother curves. Analytical and

simulated results are superimposed.

3mmax has been determined by simulation.
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theoretical predictions obtained from Eq. (22) for
Examples 1–3. The results illustrate the accuracy of
the developed analytical expression. Table 2 pre-
sents comparisons between simulated and theore-
tical steady-state EMSE. It is possible to verify the
excellent predictions obtained using Eq. (25).

However, since the influence of the second-order
moments was neglected, the prediction error in-
creases as the system tends to the linear case.

8. Experimental results

This section presents real laboratory experiments
to verify the accuracy of the analytical models.

The LMS adaptive algorithm was implemented in
a digital signal processor board (Analog Devices
ADSP 21061 processor, Ez-Kit Lite evaluation
platform) with some modifications (explained later)
in order to compensate for filtering operations (due
to the intrinsic analog filters needed for the correct
signal acquisition procedure). In order to provide a
controllable dead-zone nonlinearity at the output of
the adaptive filter, a real class B power amplifier was
placed between the digital-to-analog (DA) converter
output and the analog-to-digital (AD) converter
input of the DSP platform. The implemented system
is shown in Fig. 9 and the power amplifier circuitry
is shown in Fig. 10. A host personal computer
was used for visualization of the results. Recon-
struction and anti-aliasing filters that incorporate
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Fig. 7. Excess mean-square error (EMSE) for Example 2.

Correlated input signal (a1 ¼ 0.4), rz ¼ 10�6, plant obtained

from a normalized Hanning window with 30 taps. (a) Linear case

(t ¼ 10�10); (b) Z2 ¼ 9030 (t ¼ 0.02); (c) Z2 ¼ 361 (t ¼ 0.1). Only

one in each 100 samples is plotted in order to obtain smoother

curves. With exception of case (a) analytical and simulated results

are superimposed.

Fig. 8. Excess mean-square error (EMSE) for Example 3.

Correlated input signal (a1 ¼ 0.7), rz ¼ 10�6, plant obtained

from a normalized Hanning window with 30 taps. (a) Linear case

(t ¼ 10�10); (b) Z2 ¼ 9030 (t ¼ 0.02); (c) Z2 ¼ 361 (t ¼ 0.1). Only

one in each 100 samples is plotted in order to obtain smoother

curves. With exception of case (a) analytical and simulated results

are superimposed.

Table 1

Comparisons between simulated and predicted steady-state

weight vector from Eq. (22)

t Example 1 Example 2 Example 3

Simulated Eq. (22) Simulated Eq. (22) Simulated Eq. (22)

0.0001 1.0001 1.0001 1.0001 1.0001 1.0000 1.0000

0.001 1.0008 1.0008 1.0005 1.0005 1.0004 1.0004

0.01 1.0080 1.0080 1.0053 1.0053 1.0035 1.0035

0.1 1.0797 1.0796 1.0528 1.0526 1.0352 1.0350

Values expressed as ||limn-Nw(n)||/||wo||.

Table 2

Comparisons between simulated steady-state excess mean-square

error and theoretical results obtained from Eq. (25)

t Example 1 Example 2 Example 3

Simulated Eq. (25) Simulated Eq. (25) Simulated Eq. (25)

0.0001 �80 �84.4 �80.9 �84.4 �82.9 �84.4

0.001 �64.3 �64.4 �64.3 �64.4 �64.4 �64.4

0.01 �44.4 �44.5 �44.4 �44.5 �44.4 �44.4

0.1 �25 �25.2 �24.8 �24.9 �24.7 �24.8

Values expressed in dB.
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the CODEC (responsible for AD and DA conver-
sion) generate filtering processes in the secondary-
path (represented by block S in Fig. 11a) in a way
that the basic setup of Fig. 1 cannot be effectively
obtained. Fig. 11a presents the detailed block
diagram of the system implemented to circumvent
this problem. The linear part of the secondary-path
(S—due to the filtering processes of the CODEC)
was estimated a priori (through off-line processing)
and its estimate (Ŝ) was used for filtering the input
signal to the plant and to the LMS update equation.
Following the results presented in Ref. [25], Fig. 11b
is equivalent to the block diagram of Fig. 11a under
slow adaptation conditions. As a result, laboratory
experiments obtained from the implementation of
the block diagram of Fig. 11a were compared to
analytical results corresponding to Fig. 11b. The

simulated plant wo was a sampled cosine wave
(Fig. 12a) and the estimated linear part of the
secondary-path is shown in Fig. 12b. The experi-
mental step size was m ¼ 0.005 and the input signal
x(n) was Gaussian, white with unit power. Three
experiments are presented with measured dead-
zones of 0V (linear, Z2-N), 0.33V (Rv ¼ 3900O,
Z2 ¼ 1.26) and 0.6V (Rv ¼ 2200O, Z2 ¼ 0.38). The
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Fig. 9. Practical experiment. A class B power amplifier is placed

at the output of the adaptive filter. Results are transferred to a

host personal computer.

Fig. 10. Class B power amplifier used in the practical experiment.

DA and AD are respectively the output and input of the digital-

to-analog and analog-to-digital converters.

Fig. 11. Implemented block diagram (a) and equivalent one

(b) [25].

Fig. 12. Primary (a) and secondary-path (b) used in the practical

experiment.
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additive noise power was obtained from the steady-
state conditions of the linear experiment (after
adaptive filter convergence: rz ¼ 5.39). All experi-
mental results were filtered by a unit norm 200-tap
finite impulse response digital filter in order to
smooth the obtained curves (50 runs). Finally, all
curves were normalized with respect to the power
level obtained without the adaptive filter (0 dB). In
this example, the MSE is presented since the
measurement noise sequence is unknown.

Fig. 13 presents comparisons between laboratory
experiments and analytical results following the
block diagrams presented in Fig. 11. It can be
verified that the theoretical model is able to predict
very well the impact of the dead-zone nonlinearity
on the adaptive filter performance. The main
sources of errors are attributed to the fact that
m 6¼1 and to measurement errors.

9. Conclusions

This work presented a statistical analysis of the
LMS algorithm behavior when subjected to a
symmetric dead-zone nonlinearity at the output of
the adaptive filter. This problem is of special interest
in low-cost embedded multichannel ANC systems.
The possibility of predictions regarding the impact
of sensor or actuator nonlinearities over the
performance of the LMS algorithm enables the
designer to optimize the system for a tradeoff
between cost and performance. Deterministic re-
cursive equations were derived for the mean weight

behavior and mean-square error for Gaussian
signals and slow adaptation. Steady-state conditions
were determined assuming adaptive filter conver-
gence. Monte Carlo simulations and laboratory
experiments corroborate the theoretical results.
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