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Abstract

This work presents a modified version of the variable step size (VSS) least mean square (LMS) algorithm originally

proposed by Kwong and Johnston [IEEE Trans. Signal Process. 40(7) (July 1992) 1633–1642]. The performance of the new

algorithm, called noise resilient variable step size (NRVSS), is less sensitive than VSS to the power of the measurement

noise. Its implementation requires only a very small increase in the computational complexity. Analytical models are

derived for both NRVSS and VSS algorithms for Gaussian signals and small step-size fluctuations. Simulation results show

that the NRVSS algorithm has approximately the same transient behavior as VSS but leads to lower steady-state excess

mean-square errors as the signal-to-noise ratio (SNR) decreases. The NRVSS algorithm is specially indicated for adaptive

interference reduction in biomedical applications.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Adaptive filtering is now ubiquitous in many
signal processing application areas such as system
identification, control, and communications. It is
required, for instance, in hands-free telephony,
hearing aids, biomedicine, audio, and videoconfer-
ence [1,2]. Among the existing adaptive algorithms,
those belonging to the family of least mean square
(LMS) algorithms are particularly attractive for
low-cost real-time implementations because of their
robustness and low computational complexity [3,4].

It is well known that the performance of LMS-
based algorithms depends directly on the choice of

the step-size parameter. Larger step-sizes speed up
convergence at the expense of a larger steady-state
misadjustment. Smaller step-sizes tend to improve
steady-state performance at the cost of a slower
adaptation.

Variable step-size (VSS) strategies are frequently
sought after to provide both fast convergence and
good steady-state performances [5–14]. In general,
the step-size should be large in the early adaptation,
and have its value progressively reduced as the
algorithm approaches steady-state. The rate at
which the step-size is reduced depends on the
strategy employed and on the system variables that
control such strategy. Different strategies usually
lead to distinct performance levels.

Several VSS LMS-type algorithms have been
proposed in the literature. Two particularly inter-
esting ones were introduced in [5,9]. The perfor-
mances of these algorithms are largely insensitive to
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the power and to the statistics of the measurement
noise, which is a very desirable property. Such
robustness, however, comes at the price of a
significant increase in computational complexity
(number of multiplications) when compared to
LMS. The increase over LMS complexity is
proportional to the number of adaptive filter
coefficients.1

To remain attractive for real-time applications,
step-size adjustment strategies should require mini-
mal additions to the basic LMS computational cost.
Among the several low-cost step-size adjustment
criteria, the most promising ones are based on the
instantaneous squared error [10], on the error
correlation [11], on signal changes of successive
gradient estimations [12], and on the correlation
between input and error signals [13]. Nevertheless,
experimental results show that the steady-state
performances provided by these techniques can be
highly dependent on the measurement noise power
level. This high sensitivity can be explained by a
driving term in the mean step-size update equation
that is proportional to the noise power. As a result,
these algorithms tend to yield poor performance for
low signal-to-noise ratios (SNR). A practical
example where low SNR occurs is network echo
cancellation, which is usually subjected to severe
double-talk [2,11]. To mitigate the algorithm’s
sensitivity, double-talk detectors are used and
adaptation is interrupted in low SNR situations.
Some algorithms incorporate measurement noise
variance estimators to lessen the performance losses
[15–17]. However, such strategy is not recom-
mended in applications in which both the desired
signal and the noise are always present. Such
strategy can be very sensitive to the choice of the
power estimator, as the noise signal is not indepen-
dently accessible.

The VSS algorithm developed by Kwong and
Johnston [10] provided an interesting strategy for
LMS step-size adjustment. Later on, some authors
proposed alternative VSS algorithms which were
shown to perform better than VSS [11,18]. More
recently, the work in [19] demonstrated that VSS
provides the step-size sequence that is the closest to
the optimum sequence when properly designed. This
result revived the interest in VSS. So far, VSS
appears to lead to the best tradeoff between
convergence speed and steady-state misadjustment

among the low-complexity algorithms, even con-
sidering its intrinsic large sensitivity to the noise
power.

This work proposes a modified version of the VSS
algorithm for applications using real signals that is
less sensitive to the measurement noise, at the price
of a small increase in computational cost. The new
algorithm is called noise resilient variable step size
(NRVSS). Since its optimal design requires a good
estimation of the reference signal power, this
algorithm is specially indicated for applications
such as adaptive cancellation of power-line inter-
ference in biomedical measurements [20,21].

The paper is organized as follows. Section 2
presents a brief review of the VSS algorithm.
Section 3 introduces the NRVSS algorithm. Section
4 provides an analysis of the mean NRVSS step-size
behavior and compares VSS and NRVSS perfor-
mances for white and correlated input signals.
Section 5 presents the expression for the excess
mean-square error (EMSE) for the NRVSS algo-
rithm under slow adaptation conditions. Section 6
presents a closed formula to predict the algorithm’s
misadjustment. Section 7 presents simulations using
synthetic signals and practical examples with real
life signals in biomedical applications. The simula-
tion results corroborate the main properties derived
in the theory. Finally, Section 8 presents the main
conclusions. Preliminary results of this work were
presented in [22].

2. The VSS algorithm

The basic adaptive system block diagram is
shown in Fig. 1. Here, n is the discrete time, x(n)
is a real input signal with variance rx, d(n) is the
desired signal, y(n) the output of the adaptive filter,
e(n) the error signal, and z(n) the measurement noise
with variance rz. w(n) ¼ [w0(n) w1(n) y wN�1(n)]

T is
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Fig. 1. Adaptive system.

1For step-size updating, [5] requires 2N+2 and [9] requires

3N+3 multiplications (where N is the number of coefficients).
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the adaptive weight vector and wo(n) ¼ [w0
o(n)w1

o(n)y
wN�1

o (n)]T is the impulse response of the unknown
system. In this work wo(n) is assumed to be a first
order random walk model according to

woðnþ 1Þ ¼ wo nð Þ þ qðnÞ, (1)

where q(n) is an i.i.d. random perturbation vector,
with zero mean and variance rq and independent of
x(n) and z(n). The system’s degree of nonstationar-
ity (DN) is given by [23, p. 396]

DN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr Rf grq=rz

q
. (2)

If DN51, then the adaptive filter would be able to
track variations in the weight vector. Results for the
stationary case can be obtained by making rq ¼ 0
and wo(0) ¼ wo in (1).

The error signal is given by

eðnÞ ¼ zðnÞ � vTðnÞxðnÞ, (3)

where x(n) ¼ [x(n) x(n�1) y x(n�N+1)]T is the
input signal vector and v(n) ¼ w(n)�wo(n) the
weight error vector (v(n) ¼ [v0(n) v1(n)y vN�1(n)]

T).
The weight vector update equation for a VSS

LMS algorithm is [10]:

wðnþ 1Þ ¼ wðnÞ þ mðnÞeðnÞxðnÞ. (4)

For the VSS algorithm, the step-size at iteration n

is given by

m nð Þ ¼ mVSSðnÞ

¼

bMIN if bVSS nð ÞobMIN;

bVSS nð Þ if bMINpbVSS nð ÞpbMAX;

bMAX if bVSS nð Þ4bMAX;

8>><
>>: ð5Þ

where 0obMINobMAX are limits set to guarantee
tracking capability and stability, respectively, and
bVSS(n) is recursively determined from

bVSSðnþ 1Þ ¼ aVSSbVSSðnÞ þ gVSSe2ðnÞ, (6)

where aVSS and gVSS are the control parameters.

2.1. Mean VSS step-size behavior

Assuming that the vector input process x(n) is
zero-mean Gaussian,2 that x(n)xT(n) is statistically
independent of v(n) [24], and that bVSS(n) is

independent of x(n) and z(n),3 the mean behavior
of bVSS(n) can be approximated by [10]

EfbVSSðnþ 1Þg ¼ aVSSEfbVSSðnÞg

þ gVSS trf RKVSS nð Þg þ gVSSrz,

ð7Þ

where E{ � } means statistical expectation. KVSS(n) ¼
E{v(n)vT(n)} and R ¼ E{x(n)xT(n)} are the weight
error vector and the input signal vector correlation
matrices, respectively. This analysis also assumes
that bVSS(n) remains naturally bounded in [bMIN,
bMAX].

Note that the measurement noise influences the
VSS step-size behavior through the two rightmost
terms in (7). The term tr{RKVSS(n)} is determined
by the steady-state misadjustment, which is usually
designed to be small. Thus, this term is not the main
performance degradation factor. The term gVSSrz,
however, is proportional to the measurement noise
power, which is independent of the adaptation
process. It adds a bias equal to gVSSrz/(1�aVSS) to
the steady-state value of E{bVSS(n)} for the white
input signal case. This bias limits the step-size
reduction, and thus the minimum achievable steady-
state misadjustment.

3. NRVSS update equation

The steady-state bias of the mean step-size in (7)
can be reduced if (5) is modified to

m nð Þ ¼

bMIN if jb nð ÞjobMIN;

jb nð Þj if bMINpjb nð ÞjpbMAX;

bMAX if jb nð Þj4bMAX;

8><
>: (8)

with b(n) updated according to

bðnþ 1Þ ¼ abðnÞ þ g½kxTðnÞxðnÞ � 1�e2ðnÞ, (9)

where k, a, and g are the control parameters and
0obMINobMAX. Note that taking the magnitude of
b(n) in (8) does not involve mathematical operations,
and avoids problems that might accrue from negative
values obtained from (9). The effect of these
modifications on the algorithm behavior will become
apparent after the analysis in the next section.

Comparing the computational complexities of (6)
and (9), the latter requires only three extra multi-
plications per iteration, assuming that xT(n)x(n) is
evaluated recursively. For normalized algorithms

ARTICLE IN PRESS

2The Gaussian input signal assumption has been widely used in

adaptive filter analysis. The results obtained with Gaussian signal

models are suggestive of the fundamental analysis and design

issues, while this assumption keeps the mathematical analysis

problem tractable.

3From (6), this assumption is approximately true for small

values of gVSS [10].
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such as NLMS (which already requires the evalua-
tion of xT(n)x(n)), the computational cost increases
only by two multiplications and one addition.

The NRVSS algorithm described by (8) and (9)
could be considered a form of noise constrained
VSS algorithm as defined in [15]. The VSS algorithm
is a particular case of the NRVSS when k ¼ 0,
g ¼ �gVSS, and a ¼ aVSS. Another case for which
RVSS degenerates into VSS is when the input signal
is a noiseless constant modulus signal. In this
particular case, xT(n)x(n) is constant and (9)
becomes equivalent to (6). Such input signals occur
theoretically in some communication systems. How-
ever, in most practical situations the input signal
will be contaminated by some sort of noise and
xT(n)x(n) will be random.

4. Mean NRVSS step-size behavior

In designing the NRVSS algorithm (9), the
parameter k can be used to compensate for the
influence of the measurement noise in the mean
step-size behavior whenever the input signal x(n) is
not a noiseless constant modulus signal. Taking the
expectation of (9) we obtain

Efbðnþ 1Þg ¼ aEfbðnÞg � gEfe2ðnÞg

þ kgEfxTðnÞxðnÞe2ðnÞg, ð10Þ

where two expected values must be evaluated. Using
the same statistical assumptions used in Section 2.1,
the term E{e2(n)} is given by [10]

Efe2 nð Þg ¼ trfRKðnÞg þ rz, (11)

where K(n) ¼ E{v(n)vT(n)} for v(n) updated using
the NRVSS algorithm.

Squaring (3), multiplying the result by xT(n)x(n)
and neglecting the statistical dependence of v(n) and
x(n)xT(n), the last expected value in (10) can be
evaluated using the Gaussian moment factoring
theorem [1], resulting in

Efe2ðnÞxTðnÞxðnÞg ¼ 2trfRRKðnÞg

þ rxN trfRKðnÞg þ rxNrz. ð12Þ

Substituting (11) and (12) in (10) we obtain

Efbðnþ 1Þg ¼ aEfbðnÞg þ 2kg trfRRKðnÞg

þ gðkrxN � 1ÞEfe2ðnÞg

¼ aEfbðnÞg þ 2kg trfRRKðnÞg

þ gðkrxN � 1ÞtrfRKðnÞg

þ gðkrxN � 1Þrz. ð13Þ

4.1. Compensation of the noise influence

Examination of (13) shows that the last term on
the right is the main source of noise power
interference in the mean step-size behavior. Differ-
ently from VSS, this effect can be minimized for
NRVSS through the appropriate choice of the free
control parameter k. Using

k ¼ 1=ðrxNÞ (14)

in (13) we obtain

Efbðnþ 1Þg ¼ aEfbðnÞg þ
2g

rxN
trfRRKðnÞg. (15)

For white input signals, R ¼ rxI with I the
identity matrix, Eq. (15) simplifies to

Efbðnþ 1Þg ¼ aEfbðnÞg þ
2grx

N
trfKðnÞg. (16)

In applications with nonstationary input signals, the
parameter k can be periodically updated using
estimations of rx in time windows small enough
for quasi-stationarity (see Example 6).

Eqs. (15) and (16) show that the proposed
strategy is able to significantly reduce the direct
influence of the measurement noise power on the
mean behavior of the NRVSS step-size. The steady-
state value of E{b(n)} from (15) is now free from the
noise-driven bias. This allows E{b(n)} to be reduced
to lower steady-state levels than in (7).

4.2. Comparison between VSS and NRVSS

In order to provide a meaningful comparison
between the VSS and NRVSS steady-state perfor-
mances, the following framework is assumed:

� white input signal;
� bVSS(n) and b(n) remain naturally bounded in

[bMIN,bMAX];
� a ¼ aVSS and g ¼ NgVSS/2;
� the mean step-size converges to a constant

steady-state value.

Under these assumptions, (7) and (16) turn,
respectively, to

lim
n!1

EfbVSSðnÞg ¼
gVSS

ð1� aVSSÞ
�ðrx lim

n!1
trfKVSSðnÞgþ rzÞ;

lim
n!1

EfbðnÞg ¼
gVSS

ð1� aVSSÞ
rx lim

n!1
trfKðnÞg:

8>>>>><
>>>>>:

(17)
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Comparison of Eqs. (17) (VSS and NRVSS,
respectively) shows that the steady-state mean VSS
step-size is directly proportional (gVSS/(1�aVSS)) to
the steady-state mean-square error (MSESS ¼

rx limn-Ntr{KVSS(n)}+rz) while in NRVSS, it is
proportional (with the same factor of VSS) to the
steady-state excess mean-square error (EMSESS ¼

rx limn-Ntr{K(n)})4. It is important to note here that
the second order moments of both algorithms
are different. However, for practical applications
limn-Ntr{KVSS(n)}5rz and limn-Ntr{K(n)}5rz. In
this way, (17) demonstrates the NRVSS smaller
steady-state sensitivity to the measurement noise
power when compared to the VSS.

5. NRVSS EMSE

The EMSE of the NRVSS algorithm can be
estimated from

EMSE nð Þ ¼ Efe2 nð Þg � rz ¼ trfRKðnÞg. (18)

The evolution of the second order moments (K(n))
can be obtained by subtracting (1) from (4), using (3),
post-multiplying the result by its transpose, and taking
its expectation in the same way as in [10], resulting in

Efvðnþ 1ÞvTðnþ 1Þg ¼ EfvðnÞvTðnÞg

þ Efm2ðnÞz2ðnÞxðnÞxTðnÞg

� EfmðnÞvðnÞvTðnÞxðnÞxTðnÞg

� EfmðnÞxðnÞxTðnÞvðnÞvTðnÞg

þ Efm2ðnÞxðnÞxTðnÞvðnÞvTðnÞxðnÞxTðnÞg

þ EfqðnÞqTðnÞg. ð19Þ

To proceed with the analysis we assume that the
adaptive step-size m(n) is statistically independent of
v(n) and x(n)xT(n) [10,24]. This assumption is
approximately valid if the term multiplying e2(n)
in (9) is very small. Considering that k is given by
(14), this term will be very small for a large number
of taps and ergodic input signal x(n). Then, the
recursive equation for K(n) can be approximated by

Kðnþ 1Þ ¼ KðnÞ � EfmðnÞg½KðnÞRþ RKðnÞ�

þ 2Efm2ðnÞgRKðnÞR

þ Efm2ðnÞg½trfRKðnÞg þ rz�Rþ Rq, ð20Þ

which is a function of the first two moments of m(n).
In the following, we derive approximate expressions
for these moments.

5.1. Mean behavior of m(n)

Assuming small fluctuations of m(n) about its
mean and that bMINpb(n)pbMAX, we approximate
E{m(n)} by

EfmðnÞg ¼ EfjbðnÞjg ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Efb2ðnÞg

q
. (21)

This approximation is more accurate during the
transient phase of adaptation, when E{b(n)}2b
Var{b(n)}, where Var{ � } stands for variance.

5.2. Second order moment of m(n)

Squaring (9), taking its expected value using the
same assumption that led to (20), and applying (11)
and (12) we obtain

Efb2ðnþ 1Þg ¼ a2Efb2ðnÞg þ 4akgEfbðnÞgtrfRRKðnÞg

þ 2agEfbðnÞgðkNrx � 1ÞEfe2ðnÞg

þ k2g2Efe4ðnÞxTðnÞxðnÞxTðnÞxðnÞg

� 2kg2Efe4ðnÞxTðnÞxðnÞg

þ g2Efe4ðnÞg. ð22Þ

The last term in (22) is calculated by raising (3) to
the fourth power, ignoring the variance of the
weights, and applying the property of the moments
of a Gaussian variable [25]. This procedure results in

Efe4ðnÞg ffi 3r2z þ 6rz trfRKðnÞg þ 3trfRKðnÞg2. (23)

The two remaining expected values in (22) can be
simplified using the Gaussian Moment Factoring
Theorem [1], resulting in

Efe4ðnÞxTðnÞxðnÞg ¼ 3Nrxr2z þ 12rz trfRRKðnÞg

þ 6Nrxrz trfRKðnÞg

þ EfðvTðnÞxðnÞÞ4xTðnÞxðnÞg

ð24Þ

and

Efe4ðnÞxTðnÞxðnÞxTðnÞxðnÞg

¼ 3r2z N2r2x þ 2
XN�1
i¼0

XN�1
j¼0

r2j�i

 !

þ 6rzEfðvTðnÞxðnÞÞ2ðxTðnÞxðnÞÞ2g

þ EfðvTðnÞxðnÞÞ4ðxTðnÞxðnÞÞ2g. ð25Þ

ARTICLE IN PRESS
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square error (MSE) that would be obtained if the filter tap

weights were fixed at their optimal values.
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The evaluations of the three expectations in (24)
and (25) are detailed in Appendices A and B.
Here only the final results are presented for
conciseness:

EfðvTðnÞxðnÞÞ4xTðnÞxðnÞg

¼ 3Nrx trfRKðnÞRKðnÞg

þ 12trfRKðnÞRRKðnÞg, ð26Þ

EfðvTðnÞxðnÞÞ2ðxTðnÞxðnÞÞ2g

¼ 8trfRRRKðnÞg þ 4Nrx trfRRKðnÞg

þ N2r2x þ 2
XN�1
i¼0

XN�1
j¼0

r2j�i

 !
trfRKðnÞg, ð27Þ

and

EfðvTðnÞxðnÞÞ4ðxTðnÞxðnÞÞ2g

¼ 24trfRRKðnÞRRKðnÞg

þ 48trfRKðnÞRRRKðnÞg

þ 24rxN trfRKðnÞRRKðnÞg

þ 3 N2r2x þ 2
XN�1
i¼0

XN�1
j¼0

r2j�i

 !
trfRKðnÞRKðnÞg.

ð28Þ

Substituting (23)–(28) in (22) leads to

Efb2ðnþ 1Þg

¼ a2Efb2ðnÞg þ 4akgEfbðnÞgtrfRRKðnÞg

þ 6g2k2rzðrz þ 2trfRKðnÞgÞ
XN�1
i¼0

XN�1
j¼0

r2j�i

 !

þ 3g2trfRKðnÞg2 þ 48g2k2rztrfRRRKðnÞg

þ 3g2k 2k
XN�1
i¼0

XN�1
j¼0

r2j�i

 !
�Nrx

 !
trfRKðnÞRKðnÞg

þ 24g2k2trfRRKðnÞRRKðnÞg

þ 48g2k2trfRKðnÞRRRKðnÞg

þ 2agEfbðnÞgEfe2ðnÞgðkNrx � 1Þ

þ 3g2kNrx trfRKðnÞRKðnÞgðkNrx � 1Þ

þ 24g2kðtrfRKðnÞRRKðnÞg

þ rz trfRRKðnÞgÞðkNrx � 1Þ

þ 3g2rzðrz þ 2trfRKðnÞgÞð1� 2kNrx

þ k2N2r2xÞ. ð29Þ

Making a ¼ aVSS, g ¼ �gVSS, and k ¼ 0, (29)
becomes the recursion for Efb2VSSðnÞg.

Efb2VSSðnþ 1Þg

¼ a2VSSEfb2VSSðnÞg þ 3g2VSSEfe2ðnÞg2

þ 2aVSSgVSSEfbVSSðnÞgEfe
2ðnÞg, ð30Þ

where E{e2(n)} is given by (11). Eqs. (7), (18), (20),
and (30) constitute a theoretical model to the VSS
algorithm [10]. Using (14) in (29) it comes to

Efb2ðnþ 1Þg

¼ a2Efb2ðnÞg þ
6g2r2z
N2r2x

XN�1
i¼0

XN�1
j¼0

r2j�i

þ 3g2 trfRKðnÞg þ
4rz

N2r2x

XN�1
i¼0

XN�1
j¼0

r2j�i

 !
trfRKðnÞg

þ
4ag
Nrx

EfbðnÞgtrfRRKðnÞg

þ
48g2rz

N2r2x
trfRRRKðnÞg

þ 3g2
2

N2r2x

XN�1
i¼0

XN�1
j¼0

r2j�i � 1

 !
trfRKðnÞRKðnÞg

þ
24g2

N2r2x
trfRRKðnÞRRKðnÞg

þ
48g2

N2r2x
trfRKðnÞRRRKðnÞg. ð31Þ

Eq. (31) models the behavior of the second
moment of the VSS for the NRVSS algorithm.
For white input signals (31) becomes

Efb2ðnþ 1Þg

¼ a2Efb2ðnÞg þ
6g2r2z

N
þ 3g2r2xtrfKðnÞg

2

þ
4grx

N
aEfbðnÞg þ 3grz 1þ

4

N

� �� �
trfKðnÞg

� 3g2r2x 1�
2

N
�

24

N2

� �
trfKðnÞKðnÞg. ð32Þ

Eqs. (18), (20), (21), and (31) allow predictions
about the EMSE behavior for the NRVSS algo-
rithm.

6. Steady-state misadjustment

Assuming white Gaussian input signals in a
stationary environment and algorithm convergence,
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(20) results in

lim
n!1

TK ðnÞ ¼ rz

,
2

N

lim
n!1

EfmðnÞg

lim
n!1

Efm2ðnÞg
� rx

N þ 2

N

0
@

1
A;
(33)

where TK(n) ¼ tr{K(n)} and tr{ � } is the trace
operator. Using (8) and (21) in (33) we obtain

lim
n!1

TK ðnÞ ¼ rz

,
2

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lim
n!1

Efb2ðnÞg
q � rx

ðN þ 2Þ

N

0
B@

1
CA:
(34)

Assuming convergence in (32) (E{b2(n+1)}ffi
E{b2(n)}) we obtain

lim
n!1

Efb2ðnÞg ¼
6g2

Nð1� a2Þ
½rz þ rx lim

n!1
TK ðnÞ�

2

þ
48g2rxrz

N2ð1� a2Þ
lim

n!1
TK ðnÞ

þ
72g2r2x

N2ð1� a2Þ
lim

n!1
T2

K ðnÞ

þ
8ag2r2x

N2ð1� a2Þð1� aÞ
lim

n!1
T2

K ðnÞ

þ
3g2r2x
ð1� a2Þ

1�
2

N
�

24

N2

� �

�
XN�1
i¼0

XN�1
ja1

lim
n!1

kiðnÞ lim
n!1

kjðnÞ,

ð35Þ

where ki(n) (i ¼ 0,1, y, N�1) are the main dia-
gonal elements of K(n). Assuming the usual
practical situation of EMSESS ¼ rx limn-Ntr{K(n)}
5rz (steady-state EMSE) and using (35) in (34) we
obtain

EMSE2
SS �

N

N þ 2

1

grx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� a2Þ

3N

r
þ 2rz

N þ 1

N

� �" #

� EMSESS þ
N

N þ 2
r2z ¼ 0. ð36Þ

Solving (36) we finally obtain

EMSESS ¼
N

2ðN þ 2Þ
n�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � 4

N þ 2

N
r2z

r !
,

(37)

where

n ¼
1

grx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� a2ð Þ

3N

r
þ 2rz

N þ 1

N

� �
. (38)

The misadjustment can be theoretically predicted
by M ¼ EMSESS/rz.

7. Simulation results

This section presents six representative examples
to illustrate the properties of the NRVSS algorithm.
All examples compare the NRVSS and VSS
performances to demonstrate that NRVSS can lead
to a better steady-state performance for the same
initial transient behavior. Such methodology uses
the VSS as a golden standard, since it has been
demonstrated in [19] that VSS can produce a close-
to-optimal step-size sequence, outperforming algo-
rithms such as those presented in [11,18]. The first
four examples compare plots of VSS and NRVSS
theoretical EMSE and mean step-size behaviors
with Monte Carlo simulations for different environ-
ment conditions. The NRVSS sensitivity to errors in
estimating the free parameter k in Eq. (14) is
demonstrated in Example 2. The last two examples
present a comparison between VSS and NRVSS
algorithms when applied to biomedical applications
using real data. Unless stated otherwise, all exam-
ples present the following common characteristics:
the input signal is zero-mean Gaussian with unit
power (rx ¼ 1). The additive measurement noise is
zero-mean, independent and identically distributed,
Gaussian, and uncorrelated with the input signal.
The plant impulse response is a ten-tap (N ¼ 10)
Hanning window with unit norm (woTwo

¼ 1).
aVSS ¼ 0.9997; gVSS ¼ 2� 10�5; a ¼ aVSS; g ¼
NgVSS/2

5; w(0) ¼ [0 0 0 y 0]T; bVSS(0) ¼ b(0) ¼
0.01; 500 runs. Only one in every ten samples is
plotted in order to obtain smooth simulation curves.
The signal-to-noise ratio is defined as SNR ¼
10 log10(rx/rz).

1. Example 1: NRVSS and VSS algorithms, corre-
lated input signal generated by a first order
autoregressive filter (x(n) ¼ a1x(n�1)+u(n)) with
a1 ¼ 0.7. SNR ¼ 20 dB. Nonstationary plant
generated by a first order random walk model

ARTICLE IN PRESS

5This choice of g equates the steady-state values of E{b(n)} and
E{bVSS(n)} for a noiseless environment and white input (see

Eq. (17)). For large SNR, limn-NE{bVSS(n)} will exceed limn-N

E{b(n)} by a bias approximately equal to g rz/(1�a).
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as in Eq. (1) with rq ¼ 10�10 and DN ¼ 3� 10�4.
wo(0) is a 10-tap normalized Hanning window.

2. Example 2: NRVSS and VSS algorithms, sta-
tionary case, white input signal, and SNR ¼ 60,
20, 15, 10, 5, and 0 dB.

3. Example 3: NRVSS and VSS algorithms, white
input signal, and measurement noise with
abrupt power variation (at iteration 100,000 the
additive noise power changes from rz ¼ 10�6 to
rz ¼ 10�2).

4. Example 4: NRVSS and VSS algorithms, white
input signal and plant with abrupt signal change
(at iteration 100,000 the plant changes from wo to
�wo). [bMIN, bMAX] ¼ [0, 0.09]; SNR ¼ 60 dB.

5. Example 5: In this example a real epoch of a
power-line contamined electrocardiographic
(ECG) signal is processed by both VSS and
NRVSS algorithms. ECG signal was acquired by
a four-channel biomedical acquisition system [26]
from a 21 years old normal subject. Laboratory
acquisition used high impedance electrode cou-
pling and 30 kO unbalanced impedances between
differential amplifier inputs in order to simulate a
signal highly contaminated due to manipulation
of a patient during surgery or due to severe
influence of electric equipment. The sampling

frequency was 1 kHz. The VSS and NRVSS
parameters were: 30 coefficients; bVSS(0) ¼ b(0)
¼ 0.03; [bMIN, bMAX] ¼ [0, 0.03]. The reference
signal was obtained from the power-line trans-
former equipment and contains an almost pure
60Hz sinusoidal signal. The ECG signal is

ARTICLE IN PRESS

Fig. 2. Excess mean-square error (EMSE) for Example 1. Comparisons between (a) VSS model; (b) VSS simulation; (c) NRVSS model;

and (d) NRVSS simulations. Inset shows a detail of the first 4000 iterations.

Fig. 3. Mean behavior of the step-size (b(n)) for Example 1.

Comparisons between (a) VSS model; (b) VSS simulation;

(c) NRVSS model; and (d) NRVSS simulations.
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contamined by the 60Hz interference and high
order harmonics (nonlinear contamination). The
k parameter in Eq. (14) can be accurately
estimated since power-line amplitude and fre-
quency are very stable. The SNR is �9.2 dB.

6. Example 6: In this example a real electroence-
phalographic (EEG) signal is artificially con-
taminated with a real electro-oculographic
(EOG) interference [27] through a one tap fixed
filter with values 1, 2.5, 5, and 10 (corresponding

to SNR ¼ 0, �8, �14, and �20 dB, respectively)
[28], and a delay of three samples [29]. This
example demonstrates the usefulness of the
NRVSS in the case of nonstationary reference
signals. The adaptive filter has ten taps and
the reference signal power is recursively esti-
mated at each sample using a 300 tap moving
average filter rx(n) ¼ rx(n�1)�x2(n�K�1)+
x2(n), for K ¼ 300. gVSS ¼ 5� 10�7; b(0) ¼
0.016; [bMIN, bMAX] ¼ [0, 0.032].

ARTICLE IN PRESS

Table 1

Steady-state EMSE for VSS and NRVSS algorithms under different SNR conditions

SNR VSS NRVSS

[10, Eq. (43)] [10, Eq. (20)] Simulation Eq. (37) Eq. (18) Simulation

20 �44.74 �44.73 �44.75 �58.01 �58 �54.31

15 �34.68 �34.67 �34.67 �48.01 �47.98 �44.60

10 �24.46 �24.43 �24.43 �38.03 �37.92 �34.93

5 �13.52 �13.52 �13.51 �28.06 �27.71 �25.17

0 Diverges Diverges Diverges �18.16 �16.87 �14.92

Comparisons between theoretical models and Monte Carlo simulations. All results are in dB.

Fig. 4. Steady-state performance of the NRVSS algorithm, according to Example 2, with estimation errors of k parameter in Eq. (14).

(a) Steady-state EMSE for SNR ¼ 60 dB (}—VSS algorithm and �—NRVSS algorithm) and for SNR ¼ 20 dB (J—VSS algorithm and

�—NRVSS algorithm); (b) steady-state mean step size for SNR ¼ 60 dB (}—VSS algorithm and �—NRVSS algorithm) and for

SNR ¼ 20 dB (J—VSS algorithm and �—NRVSS algorithm). Horizontal axis presents percentual error of the estimation of k parameter

in Eq. (14). Vertical axis is in dB.
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These examples illustrate the ability of the
NRVSS algorithm to achieve higher cancellation
levels as the SNR decreases. This occurs due to the
low algorithm sensitivity to the noise power.

Example 1 (Figs. 2 and 3) shows comparisons
between VSS and NRVSS for correlated input
signals and a time-varying channel with DN equal
to 3� 10�4. Both algorithms present approximately
the same initial transient behavior but NRVSS
achieves lower steady-state EMSE (difference of
4.3 dB). The theoretical models produced good
predictions for both algorithms. This example
illustrates that NRVSS inherits the VSS good
performance characteristics discussed in [19]. The
inset in Fig. 2 shows that the transient behavior is
basically the same for both algorithms. Simulations
and analytical models are almost superimposed.
Fig. 3 shows the evolution of the mean step-size for
both algorithms. Since the NRVSS update Eq. (9)
permits the step-size to fluctuate about zero
(positive and negative amplitudes) it can achieve
lower values than VSS. Note, however, that Eq. (8)
avoids the use of negative step sizes by the adaptive
algorithm. The improvement in steady-state EMSE
is about 4 dB relative to VSS, while maintaining the
same initial transient behavior. As the DN decreases

the NRVSS performance improves, compared to
VSS. For DNX3� 10�3 NRVSS presents worse
performance than VSS and for DNX3� 10�2 both
algorithms become unstable.

Example 2 verifies the performance of the
NRVSS under low SNR and with respect to errors

ARTICLE IN PRESS

Fig. 5. Excess mean-square error (EMSE) for Example 3. Comparisons between (a) VSS and (b) NRVSS simulations. The inset shows a

detail of the first 2000 iterations.

Fig. 6. Mean behavior of the step-size (b(n)) for Example 3.

Comparisons between (a) VSS and (b) NRVSS simulations.
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in estimating the parameter k in Eq. (14). Table 1
presents the steady-state EMSE for VSS and RVSS
for a SNR ranging from 20 to 0 dB. Simulation
results are compared with theoretical predictions
obtained from Eqs. (18) and (37). The main causes
of mismatch between the analytical and simulation
results seem to be the following: (a) the neglected
fourth order moments in Eqs. (26) and (28); (b) the
assumption of independence of the step-size, x(n)
and z(n); (c) the assumption of independence
between v(n) and x(n)xT(n); and (d) the assumption
of E{b(n)}ffiE{b2(n)}1/2. Assumption of a Gaussian
distribution to the weight error vector [30] does not
result in improvements of the theoretical results.
Fig. 4 shows that estimation errors in the range of
20% still lead to a better performance of NRVSS
when compared with VSS. Note that, differently
from other VSS algorithms [15–17] that assume
knowledge of the additive noise power (hard to
accurately estimate), the NRVSS uses estimations of
the reference signal, which is always available and
noise free. In fact, in practical systems, errors in
estimating the reference signal power can be
considered negligible for stationary input signals.

Example 3 (Figs. 5 and 6) and Example 4 (Figs. 7
and 8) show that the VSS original recovery ability

for abrupt changes is retained by the NRVSS.
Under lower SNR conditions (Figs. 5 and 6 after
noise power change) the NRVSS shows a better
performance in steady-state conditions.

Example 5 presents a comparison between the VSS
and NRVSS algorithms in a real application of
interference suppression in bioelectric signals. The
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Fig. 7. Excess mean-square error (EMSE) for Example 4. Comparisons between (a) VSS and (b) NRVSS simulations. Inset details

recovery behavior.

Fig. 8. Mean behavior of the step-size (b(n)) for Example 4.

Comparisons between (a) VSS and (b) NRVSS simulations.
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z(n) signal in Fig. 1 is the 60Hz noise-free ECG and
the reference signal is the main power-line signal.
Fig. 9 shows the first 3 s from the beginning of the
adaptive process. This figure illustrates the good
performance of both algorithms in canceling power-
line interference from ECG signals. Though Fig. 9
shows that both algorithms are capable of suppressing
60Hz interference, analysis of the power spectrum
obtained through the fast Fourier transform shows
that NRVSS provides an extra 11B of attenuation
(�4.5dB) compared to VSS (6.5 dB). Fig. 10
shows the instantaneous step-size behavior of both
algorithms. The initial adaptation velocity is approxi-
mately equal for both algorithms while NRVSS
achieves lower step-size values in steady state.

In Example 6 an EEG epoch is artificially
contaminated by EOG activity. The VSS LMS
algorithm is used to reduce the eye movement
interference. The parameter k is estimated at each
sample from the nonstationary EOG signal, in
order to produce real-time estimations of its power.
Figs. 11 and 12 present, respectively, the instanta-
neous squared error and the instantaneous step-size

for NRVSS and VSS algorithms for the case of a
SNR ¼ �8 dB. This SNR is representative of elec-
trodes placed at Cz-M1 (left mastoid) with reference
at Fpz, according to the 10–20 International System.

ARTICLE IN PRESS

Fig. 9. Comparisons between VSS and NRVSS algorithms applied to a biomedical interference suppression application. (a) Power-line

contamined real ECG signal; (b) VSS processed ECG; and (c) NRVSS processed ECG.

Fig. 10. Instantaneous value of VSS (a) and NRVSS (b) step-

sizes for Example 5.
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Such derivation is characteristic of auditory evoked
potential acquisitions [31]. Even in such unfavorable
condition (nonstationary reference signal) NRVSS
overcomes VSS in performance. Simulations with
SNR ¼ 0, �14, and �20dB, representing electrodes
placed at different scalp positions, presented approxi-
mately the same result.

In spite of the good characteristics of the NRVSS
algorithm, extensive simulations have shown that
stability bounds of Eq. (9), with relation to aVSS,
gVSS, and with the DN, are somewhat tighter than
the equivalent bounds for VSS. However, when
both algorithms converge the NRVSS presents a
better steady-state performance than VSS. A

bounded MSE can be always guaranteed by
Eq. (8). The maximum allowed step size must be
chosen in light of both the companion adaptive
algorithm and the environment conditions.

8. Conclusions

This work presented a new VSS algorithm based
on the VSS algorithm originally proposed by
Kwong and Johnston. Analysis has demonstrated
that the new algorithm is less sensitive to the power
of the measurement noise when compared to VSS,
at the price of a very small increase in the
computational cost. Analytical models were devel-
oped for the new algorithm and for the conventional
VSS for Gaussian input signals and small step-size
fluctuations. Monte Carlo simulations illustrated
the validity of the theoretical results and the
properties of the new algorithm. The NRVSS
algorithm constitutes an alternative to the conven-
tional VSS, being especially attractive for applica-
tions with a SNR lower than 40 dB.
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Appendix A. Derivation of E{(vT(n)x(n))2PxT(n)x(n)}

Assuming two zero-mean Gaussian random
variables y1 and y2, they can be expanded as an
orthonormal series [32] given by

y1 ¼ k0w1;

y2 ¼ a1w1 þ A2w2;

(
(A.1)

where w2 ¼ ½w2 w3 . . .wNþ1�
T, E{wiwj}|i6¼j ¼ 0,

E{wi
2} ¼ 1, a1 is a vector, and A2 is a matrix, the

last two with dimensions compatible with y2. Hence,

Efðy1Þ
2PyT2 y2g ¼

aT1 a1

k2
0

Efy
2 Pþ1ð Þ

1 g þ trfAT
2A2gEfðy1Þ

2P
g.

(A.2)

The expansion parameters can be evaluated
through the following relations:

Efy2
1g ¼ k2

0;

Efy1y2g ¼ k0a1;

EfyT2 y2g ¼ aT1 a1 þ trfAT
2A2g:

8><
>: (A.3)
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Fig. 11. Instantaneous squared error of VSS (a) and NRVSS

(b) algorithms for Example 6 and SNR ¼ �8 dB. One in every

fifty samples is plotted to obtain smooth curves.

Fig. 12. Instantaneous value of VSS (a) and NRVSS (b) step-

sizes for Example 6 and SNR ¼ �8 dB. One in every fifty samples

is plotted to obtain smooth curves.
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Substituting (A.3) in (A.2) yields

Efðy1Þ
2PyT2 y2g

¼ Efðy1Þ
2P
gEfyT2 y2g þ ðEfðy1Þ

2Py2
1g

� Efðy1Þ
2P
gEfy2

1gÞEfy1y
T
2 gEfy1y2g=Efy2

1g
2.

ðA:4Þ

If y1 ¼ vT(n)x(n), y2 ¼ x(n), P ¼ 2, and the
expected value is conditioned on v(n), (A.4) yields

EfðvTðnÞxðnÞÞ4xTðnÞxðnÞjvðnÞg

¼ 3Nr0 trfRvðnÞv
TðnÞRvðnÞvTðnÞg

þ 12trfRvðnÞvTðnÞRRvðnÞvTðnÞg, ðA:5Þ

where independence between v(n) and x(n)xT(n) has
been assumed [24]. Neglecting the weight error
fourth order moments,

EftrfRvðnÞvTðnÞAvðnÞvTðnÞgg ffi trfRKðnÞAKðnÞg,

(A.6)

(where A means R or RR), (A.5) leads to (26).
This approximation is better as the algorithm
converges, i.e. in steady-state conditions. In general,
good results are obtained with this expression
whenever the variance of the weights is larger than
their mean.

Appendix B. Derivation of E{(vT(n)x(n))2PxT(n)

x(n)xT(n)x(n)}

Assuming three Gaussian random variables y1,
y2, and y3, they can be expanded as an orthonormal
series [32] given by

y1 ¼ k0w1;

y2 ¼ a1w1 þ a2w2;

y3 ¼ b1w1 þ b2w2 þ b3w3;

8><
>: (B.1)

where E{wkwl} ¼ 0 for k6¼l and E{wkwl} ¼ 1 for
k ¼ l; as a result

Efðy1Þ
2Py2

2y
2
3g

¼
a2
1b

2
1

k4
0

Efðy1Þ
2Py4

1g þ ð3a2
2b2

2 þ a2
2b

2
3ÞEfðy1Þ

2P
g

þ
1

k2
0

ða2
1b2

2 þ a2
1b

2
3 þ a2

2b2
1

þ 4a1a2b1b2ÞEfðy1Þ
2Py2

1g. ðB:2Þ

The expansion parameters can be evaluated
through the following relations:

Efy4
1g ¼ 3k4

0; Efy1y2g ¼ k0a1;

Efy2
1g ¼ k2

0; Efy1y3g ¼ k0b1;

Efy2
2g ¼ a2

1 þ a2
2; Efy2y3g ¼ a1b1 þ a2b2;

Efy2
3g ¼ b2

1 þ b2
2 þ b2

3:

8>>>><
>>>>:

(B.3)

Substituting (B.3) in (B.2) yields

Efðy1Þ
2Py2

2y
2
3g

¼
1

Efy2
1g

4
Efy1y2g

2Efy1y3g
2Efðy1Þ

2Py4
1g

þ
k1Efðy1Þ

2Py2
1g

Efy2
1g

3ðEfy2
1gEfy

2
2g � Efy1y2g

2Þ

þ
k2Efðy1Þ

2P
g

Efy2
1g

2
, ðB:4Þ

where

k1 ¼ Efy2
1g

2Efy2
2gEfy

2
3gEfy1y2g

2

þ Efy2
1g

2Efy2
2g

2Efy1y3g
2

þ 4Efy2
1g

2Efy2
2gEfy1y2gEfy1y3gEfy2y3g

� 7Efy2
1gEfy

2
2gEfy1y2g

2Efy1y3g
2

� Efy2
1gEfy

2
3gEfy1y2g

4 þ 6Efy1y2g
4Efy1y3g

2

� 4Efy2
1gEfy1y2g

3Efy1y3gEfy2y3g ðB:5Þ

and

k2 ¼ 2Efy2
1g

2Efy2y3g
2

� 4Efy2
1gEfy1y2gEfy1y3gEfy2y3g

þ 3Efy1y2g
2Efy1y3g

2 þ Efy2
1g

2Efy2
2gEfy

2
3g

� Efy2
1gEfy

2
3gEfy1y2g

2

� Efy2
1gEfy

2
2gEfy1y3g

2. ðB:6Þ

(1) Case 1: If y1 ¼ vT(n)x(n), y2 ¼ x(n�i), y3 ¼

x(n�j), and P ¼ 1, then (B.4) can be used to
obtain the following conditioned expectation

EfðvTðnÞxðnÞÞ2ðxTðnÞxðnÞÞ2jvðnÞg

¼ tr 8RRRþ 4NrxRRþ N2r2x þ 2
XN�1
i¼0

  (

�
XN�1
j¼0

r2j�i

!
R

!
vðnÞvTðnÞ

)
. ðB:7Þ
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Assuming independence between v(n) and
x(n)xT(n) [24] and averaging over v(n), (B.7)
comes to (27).

(2) Case 2: If y1 ¼ vT(n)x(n), y2 ¼ x(n�i), y3 ¼

x(n�j), and P ¼ 2, then (B.4) can be used to
obtain

EfðvTðnÞxðnÞÞ4ðxTðnÞxðnÞÞ2jvðnÞg

¼ 24trfRRvðnÞvTðnÞRRvðnÞvTðnÞg

þ trfRvðnÞvTðnÞAvðnÞvTðnÞg, ðB:8Þ

where

A ¼ 48RRRþ 24rxNRR

þ 3 N2r2x þ 2
XN�1
i¼0

XN�1
j¼0

r2j�i

 !
R. ðB:9Þ

Assuming independence between v(n) and
x(n)xT(n) [24], averaging over v(n), and neglect-
ing the fourth order moments of the weights
leads to (28).
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