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SUMMARY

Adaptive algorithms applied to active noise and vibration control are frequently designed for maximum
performance in linear environments. In many cases, non-linear effects can severely impair the adaptive
algorithm performance. One of the most common non-linear effects is saturation, which can occur at the
electronic circuits that drive the acoustic or mechanical transducers. An effective solution to mitigate such
non-linear distortions is to embed an automatic control of the non-linear effects within the adaptive
algorithm. Algorithms that use this approach are called minimum effort adaptive filters. This work presents
a new minimum effort algorithm (MOV-FXLMS), based on the minimum output variance least mean
square estimator, for situations in which the influence of the secondary path cannot be neglected and its
output is constrained by a saturation non-linearity. Analytical expressions are obtained for the behaviour
of the mean weight vector and for the mean square error for Gaussian inputs and slow learning. Monte
Carlo simulations show excellent agreement with the predictions of the theoretical model. The optimum
penalty factor (a design parameter of the MOV-FXLMS algorithm) is determined as a function of the
system’s degree of non-linearity. The new algorithm provides an unbiased solution to the associated non-
linear mean square estimation problem for small estimation errors of the secondary path and degree of
non-linearity. Robustness of the algorithm’s performance to such errors is addressed. The new algorithm is
compared with the conventional FXLMS algorithm for performance. Copyright # 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Active systems, designed for sound or vibration control, employ adaptive filters to generate the
signals required to interfere destructively with the field caused by the original source of
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disturbance [1–3]. Active noise control (ANC) systems are usually implemented by feedforward
structures which, for the single channel case, consist of a reference sensor at the primary source
of disturbance, a secondary source for the destructive interference, an error sensor, and an
adaptive controller. Sensors can be microphones (sound control), piezoelectric transducers or
accelerometers (vibration control). Secondary sources can be speakers (sound) or piezoelectric
transducers (vibration). Multiple channel systems have multiple sensors and actuators whose
outputs are combined in some meaningful cost function to be optimized.

The most employed adaptive algorithm in ANC is the filtered-X LMS algorithm (FXLMS)
[1]. The FXLMS algorithm is a modified version of the least mean squares (LMS) algorithm, in
which the reference signal is filtered to compensate for filtering operations in the electroacoustic
adaptation loop (the so-called secondary path).

Proper design of adaptive systems requires the modelling of the adaptive algorithm’s
behaviour under the conditions dictated by the specific application. Most adaptive system
analyses neglect non-linear effects and model the unknown systems as linear with memory. In
many important practical circumstances, a linear model simplifies the mathematics and permits
detailed system analysis. More sophisticated models, however, must be used when non-linear
effects significantly impact upon actual system behaviour [4–8]. Important non-linear effects
occur in ANC systems [7]. Sound and vibration control systems include acoustical or
mechanical paths. Signal converters (A/D and D/A), power amplifiers and transducers (speakers
or actuators) can non-linearly transform digital electrical signals into analog electrical or
mechanical signals. This non-linear effect is frequently caused by overdriving the electronics or
the transducers in the secondary path [9,10]. In these cases, non-linearities can be adequately
modelled by a saturation function.

Reference [5] recently studied the statistical behaviour of the FXLMS algorithm for a
memoryless non-linear secondary path. Saturation non-linearities were shown to significantly
affect algorithm performance. The possibility of quantifying the non-linear effects on the
performance surface and on the adaptive algorithm behaviour motivated the search for new
algorithms that could be capable of improving steady-state performance of the FXLMS
algorithm in a non-linear environment. Such a solution would allow the use of cheaper
amplifiers and transducers without a significant performance loss, therefore reducing
implementation costs.

One solution to avoid such non-linear distortions is to overdesign the system, which usually
increases the cost and limits the system’s performance. A more effective solution is to embed an
automatic control of the non-linear effects within the adaptive algorithm. This is usually
achieved by adding a penalty function to the adaptive algorithm’s cost function in order to
control the signal amplitude at the non-linearity input. Algorithms that use this approach are
called minimum effort adaptive filters [11–16]. Two important examples are the Leaky-LMS
[12], which seeks to minimize the norm of the filter’s tap weight vector, and the minimum output
variance least mean square adaptive estimator (MOV-LMS) [11,13–16], which minimizes the
adaptive filter output power. From these, the MOV-LMS is the most appropriate to handle
saturation non-linearities at the adaptive filter output, as it directly controls the power at the
non-linearity input.

The complexity of the MOV-LMS algorithm is of the same order as the LMS algorithm. It
requires only one more extra scalar multiplication and one extra subtraction, as compared to
LMS. The behaviours of the Leaky-LMS and MOV-LMS algorithms have been analysed for
linear systems [11,12]. The behaviour of the MOV-LMS for non-linear secondary paths has been
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analysed in Reference [13]. In this analysis, filtering effects in the secondary path were neglected.
It has been shown that the mean weight vector converges to the linear Wiener solution
multiplied by a real scalar (multiplicative bias). It has also been shown that the MOV-LMS
algorithm can reach the minimum of the MSE performance surface for the non-linear case if its
penalty factor is properly designed. The results obtained in Reference [13], however, cannot be
directly applied to ANC systems when the effects of the linear filtering in the secondary path
must be considered. In this case, the adaptive algorithm typically employed is the FXLMS
algorithm.

This work proposes the MOV-FXLMS algorithm for use in systems where the adaptive
filter is followed by a linear filtering operation and a saturation non-linearity.} The MOV-
FXLMS algorithm controls the signal power at the non-linearity’s input. A statistical
analysis of the algorithm is presented. Analytical expressions are obtained for the transient
and steady-state mean weight and MSE behaviours for Gaussian inputs and slow learning.
Monte Carlo simulations show excellent agreement between algorithm behaviour and
theoretical predictions. The optimum penalty factor is determined, which leads to an
unbiased converged mean weight vector.} Thus, it is shown that the MOV-FXLMS
algorithm can also reach the minimum of the MSE surface if properly designed. Since the
optimum penalty factor is a function of the system’s degree of non-linearity, the robustness of
the algorithm’s performance to errors in its estimation is also addressed. It is shown that the
MOV-FXLMS algorithm is robust to such estimation errors. The MOV-FXLMS and the
FXLMS algorithms are compared for performance. It is shown that the MOV-FXLMS
algorithm provides much better steady-state performance for moderate and large degrees of
non-linearity.

2. THE SYSTEM MODEL

Figure 1 shows a block diagram of the adaptive system considered. It is assumed that the desired
signal dðnÞ is linearly related to the input signal xðnÞ according to

dðnÞ ¼
XN�1

k¼0

wo
kxðn� kÞ þ zðnÞ ð1Þ

which can be expressed in vector form as

dðnÞ ¼ WoTXðnÞ þ zðnÞ ð2Þ

where Wo ¼ ½wo
0 w

o
1 � � � wo

N�1�
T is the vector of model parameters and XðnÞ ¼ ½xðnÞ xðn�

1Þ � � � xðn�N þ 1Þ�T is the observed data vector. The random sequence fzðnÞg is assumed
independent, identically distributed (i.i.d.), stationary, zero-mean Gaussian with variance s2z ;
and statistically independent of the random input sequence fxðnÞg: zðnÞ accounts for

}The linear filtering represents the subsystem responses (linear effects in amplifiers and transducers) that precede the
saturation non-linearity. The remaining part of the secondary path, from the saturation non-linearity to the error
sensor, is considered ideal. This structure takes into consideration the linear filtering that affects the input to the non-
linearity (the main concern in the non-linear case) while keeping the mathematical analysis manageable. The model is
more accurate as the actuators (speakers in ANC) get physically closer to the sensors (microphones in ANC).

}The mean weight vector converges to the weight vector at the minimum of the performance surface for the linear
case [17].
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measurement noise and modelling errors in (1). WðnÞ ¼ ½w0ðnÞ w1ðnÞ � � � wN�1ðnÞ�T is the
adaptive weight vector. S ¼ ½s0 s1 � � � sM�1�T is the secondary path response and #S ¼ ½#s0 #s1 � � �
#s #M�1�

T is the estimate of the secondary path response. The input sequence fxðnÞg is assumed to
be a zero-mean wide sense stationary Gaussian process with variance s2x: xf ðnÞ is the filtered
signal and Xf ¼ ½xf ðnÞ xf ðn� 1Þ � � � xf ðn�N þ 1Þ�T is the filtered input data vector. yðnÞ is the
output of the adaptive filter; ysðnÞ is the output of the linear filter S; g( � ) is the saturation non-
linearity; ygðnÞ is the non-linearity output and eðnÞ is the error signal. The saturation non-
linearity is modelled by the scaled error function

gðyÞ ¼
Z y

0

e�
c2

2s2 dc ð3Þ

This model is frequently used in analyses of saturation effects [13,18,19]. Note that lims2!1
½gðyÞ� ¼ y and lims2!0 ½gðyÞ� ¼ s

ffiffiffiffiffiffiffiffiffiffiffi
ðp=2Þ

p
sgnðyÞ: Hence, by changing s2; gðyÞ can be varied

between a linear device and a hard limiter. gðyÞ models a saturation type non-linearity that is of
great practical interest. Different values of s in (3) lead to different saturation levels. The
effects of very large non-linearities (s ! 0) with a fixed saturation level can be studied by scaling
gðyÞ by a constant such as A=s; A 2 Rþ: In this case, maxfy2gðnÞg ¼ ðp=2ÞA2: In this work, we
study the effects of the non-linearity gðyÞ in (3). The effects of a fixed saturation level
non-linearity can be easily determined by including the scaling factor A=s in the expressions
derived here.

3. DERIVATION OF THE MOV-FXLMS ALGORITHM

Using the minimum output variance criterion [11,13,14], we are interested in controlling the
variance of the signal at the non-linearity input (output of the filter S) while minimizing the
mean square error. We consider initially the case of a purely linear secondary path. This
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Figure 1. Block diagram of the non-linear adaptive system.
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facilitates the derivation of a simple update equation that controls the power at the non-linearity
input. We then analyse the behaviour of the derived algorithm in the non-linear setting and
determine the optimal value of its control parameter (penalty factor) in order to avoid a biased
solution.

Consider the following cost function to be minimized, which penalizes any increase in the
signal power at the output of S [11,13,14]:

JðnÞ ¼ e2ðnÞ þ gy2s ðnÞ ð4Þ

where g is known as the effort penalty factor [14] and

ysðnÞ ¼
XM�1

i¼0

siW
Tðn� iÞXðn� iÞ ð5Þ

is the output of the adaptive filter. The error signal is given by

eðnÞ ¼ WoTXðnÞ þ zðnÞ �
XM�1

i¼0

siW
Tðn� iÞXðn� iÞ ð6Þ

which is a function of Wðn� iÞ; i ¼ 0; . . . ;M � 1: Following the stochastic gradient approach,
we define the weight update equation

Wðnþ 1Þ ¼ WðnÞ �
m
2

XM�1

j¼0

@JðnÞ
@Wðn� jÞ

ð7Þ

The updating term in (7) is calculated in Appendix A, yielding the following weight update
equation for the MOV-FXLMS algorithm:

Wðnþ 1Þ ¼ WðnÞ þ m½eðnÞ � g#ysðnÞ�XfðnÞ ð8Þ

where

XfðnÞ ¼
X#M�1

j¼0

#sjXðn� jÞ ð9Þ

is the filtered input signal vector and

#ysðnÞ ¼
X#M�1

i¼0

#siW
Tðn� iÞXðn� iÞ ð10Þ

is an estimate of the non-linearity input, based on the coefficients of the estimated secondary
path response #S:

4. THE MEAN WEIGHT BEHAVIOUR IN A NON-LINEAR
ENVIRONMENT}ANALYSIS

We now examine the stochastic behaviour of the MOV-FXLMS algorithm (8) when applied to
the non-linear environment depicted in Figure 1, with the saturation non-linearity given by (3).
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In the non-linear system, the error expression becomes

eðnÞ ¼ WoTXðnÞ þ zðnÞ � g½ysðnÞ� ð11Þ

Taking initially the expected value of (8) conditioned on the set W ¼ fWðnÞ;Wðn�
1Þ; . . . ;Wðn�M þ 1Þg of the last M weight vectors yields

EfWðnþ 1ÞjWg ¼ WðnÞ þ mEfeðnÞXfðnÞjWg � mgEf#ysðnÞXfðnÞjWg ð12Þ

Substituting (5), (9)–(11) in (12), and assuming M5 #M;k yields

EfWðnþ 1ÞjWg ¼WðnÞ þ m
X#M�1

j¼0

#sjEfXðn� jÞXTðnÞjWgWo

þ m
X#M�1

j¼0

#sjEfzðnÞXðn� jÞjWg

� m
X#M�1

j¼0

#sjE g
XM�1

i¼0

siW
Tðn� iÞXðn� iÞ

" #
Xðn� jÞjW

( )

� mg
X#M�1

i¼0

X#M�1

j¼0

#si#sjEfXðn� jÞXTðn� iÞjWgWðn� iÞ ð13Þ

Equation (13) clearly shows that the statistical analysis of the algorithm behaviour involves
moments of products of the present and past values of data and weight vectors. Since the joint
probability density function of the weights and data is not known, statistical approximations
must be made to proceed with the analysis. The following assumptions are used for sufficiently
small m:

A1:

EfXðn� jÞXTðnÞjWg � R�j ; 04j4M � 1

A2:

EfXðn� jÞXTðn� iÞjWg � Ri�j ; 04i; j4M � 1

where Rk�‘ ¼ EfXðn� ‘ÞXTðn� kÞg is the correlation matrix of time-lagged input vectors.
A sufficient condition for these assumptions to hold is that weight and data vectors are

statistically independent. Clearly, this is not true. In fact, A1 and A2 only imply that the
statistical dependence of weight and data vectors is not significant in determining the algorithm
behaviour. Similar assumptions have been made in Reference [5] and extensively verified by
numerical simulations.

The third expectation in (13) is of the form Efgðy1ÞY2g where y1 ¼
PM�1

i¼0 siW
Tðn� iÞXðn� iÞ

and Y2 ¼ Xðn� jÞ: This expectation can be evaluated using the procedure used to derive

kThis is a reasonable assumption for practical implementations, where the estimated response is seldom longer than the
actual secondary path response.
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Reference [5, Equation (13)], leading to

E g
XM�1

i¼0

siW
Tðn� iÞXðn� iÞ

" #
Xðn� jÞjW

( )

¼
PM�1

i¼0 siRi�jWðn� iÞ

1
s2
PM�1

j¼0

PM�1
i¼0 sisjW

Tðn� jÞRi�jWðn� iÞ þ 1
h i1=2 ð14Þ

Using A1, A2 and (14) in (13) and noting that E{z(n)X(n�j)|W}=0 because zðnÞ is zero-mean
and statistically independent of xðnÞ; yields

EfWðnþ 1ÞjWg ¼WðnÞ þ m
X#M�1

j¼0

#sjR�jW
o � mg

X#M�1

i¼0

X#M�1

j¼0

#si#sjRi�jWðn� iÞ

� m

P #M�1
j¼0

PM�1
i¼0 #sjsiRi�jWðn� iÞ

1
s2
PM�1

j¼0

PM�1
i¼0 sisjW

Tðn� jÞRi�jWðn� iÞ þ 1
h i1=2 ð15Þ

The expected value of (15) can only be approximated since the joint probability density
function of WðnÞ and WðmÞ is not known. A good approximation is obtained by noticing thatPN�1

k¼0 wkðn� jÞwkðn� iÞ can be assumed weakly correlated with w‘ðn� iÞ for large values of N
and for all i, j and ‘: For ergodic signals, this is equivalent to apply the averaging principle
proposed in Reference [20], as the value of the summation tends to be slowly varying when
compared with w‘ðn� iÞ for large N. Approximating WðnÞ and WTðn� jÞRi�jWðn� iÞ by their
expected values separately in the numerator and denominator of (15)nn and using

EfWTðn� jÞRi�jWðn� iÞg ¼ tr½Ri�jEfWðn� iÞWTðn� jÞg� ð16Þ

where tr[ � ] is the trace of the matrix, leads to

EfWðnþ 1Þg ¼EfWðnÞg þ m
X#M�1

j¼0

#sjR�jW
o � mg

X#M�1

i¼0

X#M�1

j¼0

#si#sjRi�jEfWðn� iÞg

� m

P #M�1
j¼0

PM�1
i¼0 #sjsiRi�jEfWðn� iÞg

1
s2
PM�1

j¼0

PM�1
i¼0 sisj trfRi�jKi;jðnÞg þ 1

h i1=2 ð17Þ

where

Ki;jðnÞ ¼ EfWðn� iÞWTðn� jÞg ð18Þ

is the cross-correlation matrix of delayed weight vectors. Note that for g ¼ 0 (17) reduces to the
mean weight equation for the FXLMS with non-linear secondary path derived in Reference [5].
For sufficiently small m, Ki;jðnÞ can be approximated as

Ki;jðnÞ � EfWðn� iÞgEfWTðn� jÞg ð19Þ

which completes the model for the mean weight behaviour.

nnThis approximation has been successfully applied in References [4,5].
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5. THE OPTIMAL PENALTY FACTOR

In this section, we show that the MOV-FXLMS algorithm leads to a biased steady-state mean
weight solution. Then, we determine how the effort penalty factor g in (4) can be designed to
control the steady-state bias.

5.1. Mean steady-state weight vector

Assuming convergence as n ! 1; defining W1 ¼ limn!1 EfWðnÞg; using (19) in (17) and
solving it for W1 yields

W1 ¼ g *R #S #S
þ

1

1
s2W

T
1
*RSSW1 þ 1

� �1=2 *R #SS

2
4

3
5
�1

*R #S
Wo ð20Þ

where

*R #SS
¼
X#M�1

j¼0

XM�1

i¼0

#sjsiRi�j

*R #S
¼
X#M�1

j¼0

#sjR�j

*RSS ¼
XM�1

j¼0

XM�1

i¼0

sisjRi�j

*R #S #S
¼
X#M�1

j¼0

X#M�1

i¼0

#si#sjRi�j ð21Þ

Up to this point, the results are valid for any S and #S: To proceed with the determination of
the optimum penalty factor, we assume from now on that #S is a good estimate of S; or #S � S: In
this case (20) reduces to

W1 ¼ n *R
�1

SS
*RSW

o ð22Þ

where

n ¼
1

gþ
1

1
s2W

T
1
*RSSW1 þ 1

� �1=2
ð23Þ

and

*RS ¼
XM�1

j¼0

sjR�j ð24Þ

Using (22) in (23) yields

n ¼
1

gþ 1

ðn2b2þ1Þ1=2
ð25Þ
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where

b2 ¼
1

s2
WoT *R

T

S
*R
�1

SS
*RSW

o ð26Þ

Note that n is a positive scalar since g; b2 and n2 are positive. More importantly, note that the
steady-state weight scale factor n is a function of the penalty factor g; which is a design
parameter. The degree of non-linearity b2 is defined as the ratio of the average steady-state
power of the cancelling signal ygðnÞ in the linear case (equal to ysðnÞ) to the maximum non-linear
output power ðlimys!1 gðysÞÞ [5, Equation (30)]. In the particular case studied here #S ¼ S:

5.2. Optimum penalty factor

It was shown in Reference [17, Equation (15)] that the weight vector at the minimum of the
performance surface corresponding to the non-linear estimation problem in Figure 1 is given by

*W ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

2b2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

4b4

svuut � *R
�1

SS
*RSW

o ¼ a *R
�1

SS
*RSW

o ð27Þ

Comparing (27) and (22) shows that the MOV-FXLMS algorithm leads to a steady-state
solution that is collinear with the optimal solution for #S ¼ S: Thus, an unbiased steady-state
solution can be obtained by making n ¼ a:yy

Solving (23) for g leads to the solution

g ¼
1

n
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2b2 þ 1

q ð28Þ

which for

n ¼ a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

1

2b2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

1

4b4

svuut ð29Þ

leads to the expression for the optimum value of g:

gopt ¼
1

n
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2b2 þ 1

q ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
2b2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

4b4

qr �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
þ b2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
þ b4

qr ð30Þ

which is the effort penalty factor that leads to an unbiased steady-state solution. Figure 2 shows
the variation of gopt as a function of the degree of non-linearity b2:Note that gopt ¼ 0 for b2 ¼ 0:
This shows that the optimally designed MOV-FXLMS algorithm (g ¼ gopt) becomes the
FXLMS algorithm in the linear case (b ¼ 0).

5.3. Design issues

Though (30) gives the design value of gopt; this expression is a function of parameter b2; which
must be estimated in practical applications. An estimate of b2 can be obtained from the steady-

yyNote that (22) corresponds to the minimum MSE solution (27) multiplied by a non-unity scalar factor if n=a: This
non-unity scalar factor constitutes a multiplicative bias to the optimum solution. An unbiased solution is obtained for
n ¼ a in (22), with a defined in (27).
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state behaviour of the FXLMS algorithm, which corresponds to the MOV-FXLMS algorithm
for g ¼ 0: It is easy to show from (25) that for g ¼ 0; and assuming #S ¼ S;

n ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
q ð31Þ

with b2 given by (26). Also, from (5) and assuming convergence,

lim
n!1

ysðnÞ ¼
XM�1

i¼0

siW
T
1Xðn� iÞ ð32Þ

and then

Efy2s ðnÞgjn!1 ¼ WT
1
*RSSW1 ð33Þ

Now, using (22) and (31) in (33) and recognizing from (26) that WoT *R
T

S
*R
�1

SS
*RSW

o ¼ s2b2

yields

Efy2s ðnÞgjn!1 ¼
s2b2

1� b2
ð34Þ

and thus

b2 ¼
Efy2s ðnÞgjn!1

Efy2s ðnÞgjn!1 þ s2
ð35Þ
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Figure 2. Optimum penalty factor gopt as a function of the degree of non-linearity b2:
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An estimate of s2 can be obtained by noting that [5]

maxfy2gðnÞg ¼
p
2
s2 ¼ lim

y!1
gðyÞ ð36Þ

Thus,

s2 ¼
2

p
maxfy2gðnÞg ð37Þ

which can be estimated off-line by driving the non-linearity into saturation and measuring its
output.

An estimate of Efy2s ðnÞgjn!1 can be obtained as the average steady-state power of the
cancelling signal in the linear case ðgðysÞ ¼ ysÞ with g ¼ 0: To this end, an estimate #S of S must
be obtained off-line. This can be accomplished using a low power excitation so that the actuator
(speaker in ANC systems) is not driven into saturation. Then, the system in Figure 1 can be
implemented with the sub-system composed by S and gðysÞ replaced by #S; using g ¼ 0; and with
the cancellation point implemented within the signal processor. The output of the replacement #S
can then be used as an estimate #ysðnÞ for ysðnÞ:

The estimation of b2 using the technique described above assumes that the non-linearity
model given by (3) is accurate. It will be shown in the next section that the performance of the
MOV-FXLMS algorithm is robust to errors in this estimation for moderate and large degrees of
non-linearity.

6. MEAN SQUARE ERROR BEHAVIOUR

The expression for the MSE conditioned on W has been derived in Reference [5] using A1, A2
and is given by

Efe2ðnÞjWg ¼ s2z þWoTR0W
o �

2
PM�1

i¼0 siW
oTRiWðn� iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
s2
PM�1

j¼0

PM�1
i¼0 sjsiW

Tðn� jÞRi�jWðn� iÞ þ 1
q

þ s2 sin�1

PM�1
j¼0

PM�1
i¼0 sjsiW

Tðn� jÞRi�jWðn� iÞPM�1
j¼0

PM�1
i¼0 sjsiW

Tðn� jÞRi�jWðn� iÞ þ s2

 !
ð38Þ

where R0 ¼ EfXðnÞXTðnÞg is the input vector autocorrelation matrix.
Using the same approximations used to derive (17) and (19) from (15) leads to an expression

for the MSE for sufficiently small m:

xðnÞ ¼ Efe2ðnÞg � s2z þWoTR0W
o

�
2
PM�1

i¼0 siW
oTRiEfWðn� iÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
s2
PM�1

j¼0

PM�1
i¼0 sjsiEfWTðn� jÞgRi�jEfWðn� iÞg þ 1

q

þ s2 sin�1

PM�1
j¼0

PM�1
i¼0 sjsiEfWTðn� jÞgRi�jEfWðn� iÞgPM�1

j¼0

PM�1
i¼0 sjsiEfWTðn� jÞgRi�jEfWðn� iÞg þ s2

 !
ð39Þ

where the mean weight vectors are determined using (17), which includes the dependence on the
effort penalty factor g:
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6.1. Steady-state mean square error

Substituting W1 for EfWðn� iÞg and EfWðn� jÞg in (39), using (22) and (23) with g ¼ gopt
given by (30) yields the steady-state MSE for the optimally designed MOV-FXLMS algorithm:

lim
n!1

xðnÞ ¼ s2z þWoTR0W
o þWoT *R

T

S
*R
�1

SS
*RSW

o 1

b2
sin�1 n2b2

n2b2 þ 1

� �
�

2nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2b2 þ 1

q
2
64

3
75 ð40Þ

where n can be obtained from the solution of (25). Note that (40) agrees with the expression for
the minimum of the MSE surface derived in Reference [17] for the non-linear mean square
estimation associated with the system in Figure 1.

7. SIMULATION RESULTS

This section presents simulation results in support of the theoretical models and to verify the
applicability of the MOV-FXLMS algorithm. Representative plots have been selected from a
large number of results. The optimal penalty factor g calculated from (30) has been used for all
examples, with b2 evaluated using (26). In the examples where #S=S; the degree of non-linearity
b2 evaluated from (26) leads to a value of g obtained from (30) that is not optimal, since gopt has
been determined for #S ¼ S: These examples were chosen to illustrate the robustness of the
algorithm to errors in the estimate of the degree of non-linearity b2:

7.1. Example 1

Consider Wo ¼ ½0:4130 0:4627 0:4803 0:4627 0:4130�T; WoTWo ¼ 1; xðnÞ white with variance
s2x ¼ 1; measurement noise zðnÞ with s2z ¼ 10�6 and perfect secondary path estimation with
#S ¼ S ¼ ½0:9325 0:2798 0:1865 0:0933 0:0933�T: Simulations are presented for three step sizes
(normalized with respect to the linear FXLMS stability limit). The stability limit mmax � 0:2 has
been determined by simulation. Step sizes m1 ¼ mmax=5; m2 ¼ mmax=10 and m3 ¼ mmax=100 have
been used to evaluate the models for large, moderate and small m: Also, b2 ¼ 0:0001; 0.3, 0.5 and
0.9 have been selected to illustrate the model accuracy for small, moderate and large degrees of
non-linearity. Figures 3(a), (c) and (e) compare the simulated mean weight behaviour with the
analytical predictions using (17). Each plot presents the results for b2 ¼ 0:0001; 0.3 and 0.9 and
a single m; averaged over 1000 realizations. Three vector components were selected at random to
conserve space. The remaining components have similar behaviour. The analytical model is
accurate even for relatively large step sizes.

Figures 3(b), (d) and (f) show the simulated MSE and the theoretical MSE using (39). Each
figure shows curves for b2 ¼ 0:0001; 0.3, 0.5 and 0.9. Plots are shown for different step sizes. All
plots were obtained by averaging 1000 runs. The analytical model and the simulations are in
close agreement in all cases, even for the relatively large m ¼ m1: The analysis of these plots show
that, in general, the steady-state MSE decreases with the step size m: This decrease, however,
becomes less significant as the degree of non-linearity increases (see, for instance, the curves
labeled IV). Such behaviour is expected because a large degree of non-linearity (strong
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Figure 3. Example 1: left column: EfWðnÞg for b2 ¼ 0:0001 (curve (I)), 0.3 (curve (II)) and 0.9 (curve (III)).
Plots (a), (c) and (e) for different values of m: Right column: MSE in dB for b2 ¼ 0:0001 (curve (I)), 0.3
(curve (II)), 0.5 (curve (III)) and 0.9 (curve (IV)). Plots (b), (d) and (f) for different values of m: All plots
averaged over 1000 runs. Simulation}ragged curves. Theory}smooth curves. g ¼ gopt in all cases: (a)
Efw4ðnÞg for m1 ¼

mmax

5
¼ 0:04; (b) MSE (dB) for m1 ¼

mmax

5
¼ 0:04; (c) Efw3ðnÞg for m2 ¼

mmax

10
¼ 0:02; (d)

MSE (dB) for m2 ¼
mmax

10
¼ 0:02; (e) Efw5ðnÞg for m3 ¼

mmax

100
¼ 0:002 and (f) MSE (dB) for m3 ¼

mmax

100
¼ 0:002:
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saturation) limits the ability of the adaptive filter to cancel the desired signal dðnÞ: For large
values of b; ygðnÞ cannot follow the variations of ysðnÞ dictated by the adaptive filter.

Figures 4(a)–(c) compare the performances of the MOV-FXLMS and FXLMS (g ¼ 0)
algorithms. Note that the MOV-FXLMS algorithm performs significantly better than the
FXLMS algorithm for moderate and large degrees of non-linearity.

7.2. Example 2

This example repeats Example 1 for a longer impulse response Wo and for an imperfect
estimate of the secondary path. Consider Wo=[0.0156 0.0598 0.1260 0.2041 0.2822 0.3485
0.3927 0.4083 0.3927 0.3485 0.2822 0.2041 0.1260 0.0598 0.0156]T, WoTWo ¼ 1; S=[0.9356
0.2807 0.1871 0.0936 0.0468]T, STS¼ 1; #S¼ ½0:8922 0:3965 0:1487 0:1487 0:0496�T; #S

T #S ¼ 1; x
ðnÞ white with s2x ¼ 1 and s2z ¼ 10�6: The stability limit mmax ¼ 0:05 was determined by
simulation. The parameters were m1 ¼ mmax=5; m2 ¼ mmax=10; m3 ¼ mmax=100 and b2 ¼ 0:0001;
0.3, 0.5 and 0.9.
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Figure 4. Example 1: comparison between MOV-FXLMS and FXLMS algorithms. MSE in dB for b2 ¼
0:0001 (curve (I)), 0.3 (curve (II)), 0.5 (curve (III)) and 0.9 (curve (IV)). Plots (a)–(c) for different values of
m: Curves drawn using the analytical models derived in this work (MOV-FXLMS) and in Reference [5]
(FXLMS). FXLMS: dotted line. MOV-FXLMS: continuous line: (a) MSE (dB) for m1 ¼

mmax

5 ¼ 0:04; (b)
MSE (dB) for m2 ¼

mmax

10
¼ 0:02 and (c) MSE (dB) for m3 ¼
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100
¼ 0:002:
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Figure 5. Example 2: left column: EfWðnÞg for b2 ¼ 0:0001 (curve (I)), 0.3 (curve (II)) and 0.9 (curve (III)).
Plots (a), (c) and (e) for different values of m: Right column: MSE in dB for b2 ¼ 0:0001 (curve (I)), 0.3
(curve (II)), 0.5 (curve (III)) and 0.9 (curve (IV)). Plots (b), (d) and (f) for different values of m: All plots
averaged over 1000 runs. Simulation}ragged curves. Theory}smooth curves. g determined from (30) in
all cases: (a) Efw8ðnÞg for m1 ¼
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Figure 6. Example 3: left column: EfWðnÞg for b2 ¼ 0:0001 (curve (I)), 0.3 (curve (II)) and 0.9 (curve (III)).
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Figure 5 verifies the analytical model using recursions (17) and (39). Different weights were
chosen for each step size, as compared to Example 1, in order to provide a broader assessment
of the system behaviour. Figures 5(b) and (d) indicate that the model sometimes deviates from
the simulation for large step sizes and small degrees of non-linearity. The mismatch is minimal
for small m (Figure 5(f)), used in most practical applications (see, Reference [21] for instance).
The model is accurate for the initial transient phase (cancellation to �30 dB, compatible with
most practical applications) and in steady state, even for large m:

7.3. Example 3

This example verifies the model accuracy for correlated inputs. xðnÞ is an autoregressive
process with s2x ¼ 1; obtained by passing a white noise uðnÞ with variance s2u ¼ 0:0965 through
the filter with attenuation given by AðzÞ ¼ 1� 0:195z�1 þ 0:95z�2: The eigenvalue spread
of R0 is equal to 39.82 [22]. Wo=[0.7756 0.5171 �0.3620]T, S=[0.8944 0.4472]T, #S ¼
½0:9701 0:2425�T (imperfect secondary path estimation). mmax ¼ 0:06 (experimentally
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Figure 7. Comparisons between steady-state misadjustments (%) for the FXLMS and the MOV-FXLMS
algorithm as a function of errors in estimating gopt: (a) b

2 ¼ 0:01; (b) b2 ¼ 0:1; (c) b2 ¼ 0:3; (d) b2 ¼ 0:5; (e)
b2 ¼ 0:7 and (f) b2 ¼ 0:9: Vertical axes: misadjustment (%). Horizontal axes: #b2=b2; where #b2 is the
estimated value of b2: Horizontal lines: misadjustment for the FXLMS algorithm. Curved lines:

misadjustment for the MOV-FXLMS algorithm.
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obtained for the linear case). The parameters used were again m1 ¼ mmax=5; m2 ¼ mmax=10;
m3 ¼ mmax=100 and b2 ¼ 0:0001; 0.3, 0.5 and 0.9. Figure 6 shows the theoretical and simulated
results.

7.4. Robustness to errors in parameter estimates

These results verify the robustness of the MOV-FXLMS algorithm to errors in parameter
estimations and compare its steady-state performance with FXLMS. Consider Wo=[0.4130
0.4627 0.4803 0.4627 0.4130]T and #S ¼ S ¼ ½0:9325 0:2798 0:1865 0:0933 0:0933�T: The input
sequence is a zero-mean Gaussian, correlated signal with variance s2x ¼ 1 and with eigenvalue
spread of its autocorrelation matrix equal to 10.34. The measurement noise is white Gaussian
with variance s2z ¼ 10�6: Figure 7 compares the steady-state misadjustments achieved by the
FXLMS algorithm (horizontal lines) and by the MOV-FXLMS algorithm (curved lines) as a
function of the error in estimating b2: Defining #b2 as the estimated value of b2; the
misadjustment is defined as

M ¼
xð1Þjb2 � xð1Þj #b2

xð1Þjb2
ð41Þ

with xð1Þ defined by (40). Note that (41) refers only to the misadjustment due to an error in the
estimation of b2: This does not include the misadjustment due to weight fluctuations about the
mean value, which are controlled by the step size m: Thus, a correct estimation #b2 ¼ b2 leads to
M=0.

Each subplot is for a different degree of non-linearity b2 in {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}.
The vertical axes give the misadjustment and the horizontal axes the ratio #b2=b2;
where #b2 stands for the estimated value of b2: Figure 7 shows that the robustness of the
MOV-FXLMS algorithm increases with the degree of non-linearity b2: It can also be
verified from Figure 7 that the MOV-FXLMS can perform much better than the
FXLMS algorithm even for significant estimation errors for moderate and large degrees of
non-linearity.

8. CONCLUSIONS

This paper has proposed a new adaptive algorithm to be used in ANC systems with a
saturation non-linearity in the secondary path. The MOV-FXLMS algorithm belongs to the
family of minimum effort algorithms, and implicitly controls the non-linear distortion by
limiting the signal amplitude at the non-linearity input. Statistical analysis and simulation
results show that the new algorithm outperforms the FXLMS algorithm, specially for moderate
and large degrees of non-linearity. The optimal design of the new algorithm has been studied,
with the determination of the optimal penalty factor that leads to an unbiased solution. The
estimation of the necessary parameters for a practical design has been addressed. It has been
verified that the MOV-FXLMS steady-state misadjustment improvement over the FXLMS
performance is robust to errors in estimating the system’s degree of non-linearity for moderate
and large degrees of non-linearity.
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APPENDIX A: EVALUATION OF (8)

From (4),
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Using (5) and (6) yields
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¼ � 2½eðnÞ � gysðnÞ�
XM�1

j¼0

@

@Wðn� jÞ

XM�1

i¼0

siW
Tðn� iÞXðn� iÞ

" #

¼ � 2½eðnÞ � gysðnÞ�
XM�1

j¼0

siXðn� iÞ ðA3Þ

Substituting (A3) in (7) and using (9) yields

Wðnþ 1Þ ¼ WðnÞ þ m½eðnÞ � gysðnÞ�XfðnÞ ðA4Þ

Since the coefficients of the secondary path S are unknown, we replace ysðnÞ in (A4) with #ysðnÞ
given by (10), yielding (8).
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