
A complementary low-cost method for broadband noise reduction
in hearing aids for medium to high SNR levels

Márcio Holsbach Costa n

Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil

a r t i c l e i n f o

Article history:
Received 13 June 2013
Accepted 18 December 2013

Keywords:
Hearing-aids
Noise reduction
Adaptive filter
Speech processing
Noise cancelling

a b s t r a c t

This work presents a complementary broadband noise reduction scheme for hearing aid applications.
It is designed to attenuate uncorrelated and small-correlation-length acoustic noise with controlled
speech distortion. Noisy speech signals are pre-processed by the proposed strategy before being
subjected to an existing narrowband noise reduction system. The clean speech signal is estimated by a
convex combination of the unprocessed speech signal and the output of a linear predictor. The convex
combination coefficient is adjusted to provide noise suppression while avoiding significant unvoiced
utterance distortions. The proposed method is optimized to minimize speech mean-square prediction-
error. A low-cost adaptive implementation is proposed and compared to the conventional adaptive linear
predictor showing an improved performance, as predicted by theory. Four different objective quality
measures and subjective assessment performed by normal hearing volunteers indicate that the
combined use of the proposed technique with a narrowband noise reduction system consistently
improves speech quality for a range of signal to noise ratios. Low-cost digital hearing aids that make use
of the conventional adaptive predictor for broadband noise reduction can be easily modified to
incorporate the new proposal with a minimum amount of extra computational resources.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hearing-aids are essential devices for the social integration of
people that suffer from hearing limitations or neurosensorial losses.
These conditions affect about 9% of the world0s population [1,2].

Hearing-aids are very complex systems consisting of several
processing units that perform tasks such as adaptive directionality,
noise reduction, dynamic compression and feedback cancellation.
These elements interact to improve intelligibility and provide
better acoustic comfort for the user. Due to their small size and
power consumption requirements, the availability of computa-
tional resources for each subsystem is restricted. As a result, each
technique should be designed as sparingly as possible.

Despite the great advancements in this area, two main causes of
sensorial discomfort – noise amplification and reverberation – still
persist [3]. One of the major complaints of hearing aid users is poor
speech intelligibility due to background noise. Many studies have
demonstrated that hearing impaired people need an SNR-501 from
10 to 30 dB higher than that required for the non-impaired [4].

The basic function of a noise reduction system is to lessen the
user0s perception of environmental acoustic noise, minimizing

distortion and masking effects2. With noise reduction, acoustic
comfort increases while fatigue decreases, which in turn increases
the equipment0s acceptability3 [5,6].

Although multi-microphone hearing-aids may have many
advantages over single microphone devices4, some commercial
gadgets are still equipped with the latter [7,8].

The most common single microphone noise reduction approaches
are [9]: (a) subspace decomposition [10], (b) statistical and parametric
modelling [11–13], and (c) Wiener filtering. The first two approaches,
although feasible, incur considerable computational complexity (even
when look-up tables are used to alleviate the effort) and large time
delay due to signal processing [14]. Wiener filtering has also been
applied to hearing-aids; however, it tends to generate unpleasant
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the speech in a conversation.

2 Distortion happens when the hearing impaired perceives sound but its
intelligibility is compromised due to the lack of high frequency information. The
problem is worsened by the existence of background noises, resulting in the
complaint that “it is possible to hear, but not understand, speech” [2]. Moreover,
masking decreases speech redundancy; as a result, small amounts of noise can lead
to significant intelligibility degradation [50].

3 Although noise reduction systems can provide a substantial improvement in
speech quality (acoustical comfort), the same effect does not necessarily occur
upon intelligibility. Intelligibility improvements can be obtained by speech
enhancement systems [16,51], whose aim is not to reduce noise, but rather
highlight the contrast between vowels and consonants [1].

4 Multi-microphone techniques take advantage of the spatial separation
among acoustic sources [1], but they require a considerable distance among
microphones. This condition makes them inappropriate for ear-canal devices [52].
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acoustic artefacts called “musical noise” [3]. Without exception, all
techniques present a trade-off between noise reduction and speech
distortion [9,15,16].

The limited computational resources available in commercial
devices greatly limit the development of new techniques for
hearing-aid improvement. In recent years, manufacturers have
provided specific hardware to lessen this problem. An example of
a very successful commercial architecture for the (software/hard-
ware) implementation of a noise reduction system can be found in
Ref. [17]. In this architecture, the digitized acoustic signal is split
into different frequency channels; each of them is then subjected
to independent attenuation factors before signal reconstruction.
Signals from high signal to noise ratio (SNR) channels are pre-
served, while low SNR channel signals are attenuated. This
approach, introduced in Ref. [18], works well only for narrowband
noise. For broadband noise, all channels tend to suffer approxi-
mately the same attenuation, maintaining the same global SNR.

In Ref. [19], an extensive analysis of background noise databases
showed that not all daily-life noises can be referred to as narrow-
band (low-frequency) background noises. As a result, the authors of
Ref. [19] suggest that hearing aids should not only be fine-tuned to
the individual audiogram but also to environmental conditions. In
fact, in Ref. [19] it was shown that noise in environments such as
industry and nature preponderantly present flat spectrum without
temporal modulations. In work conditions (industry), hearing-aid
users cannot reduce volume due to the possibility of warning sounds
[20]. Consequently, many hearing-impaired workers are often forced
to endure a certain degree of discomfort. In addition, [21] stated that
the most difficult listening situations that commonly face persons
with hearing loss feature broadband competition.

Some attempts to overcome the broadband noise problem in
hearing-aids can be found in Refs. [22,23]. This work will focus on
broadband acoustic noise characterized by small correlation-
length5 (such as low-pass noise sampled at near-Nyquist
frequency rates6).

The conventional linear adaptive predictor (CLAP) [24–26] is a low-
complexity solution that performs well in reducing broadband noise.
However, it also tends to cancel uncorrelated speech components,
which constitute about 20 to 25% of natural speech in the English
language [27]. As a result, it produces muffled speech sounds and
musical noise which can severely affect both speech intelligibility and
naturalness. Some works have recently addressed the design of
practical low distortion broadband noise cancellers based on the CLAP
structure. In Ref. [28], a weighted sum of contaminated signal and
CLAP output was proposed. This approach aims to enhance the quasi-
stationary components of speech (voiced sounds), improving intellig-
ibility and, secondarily, SNR. However, many intelligibility problems
can be attributed to poor comprehension of unvoiced sounds. In
Ref. [29], a first attempt was made to control the CLAP attenuation of
uncorrelated speech components. However, the authors were not
successful in accurately determining the optimal control parameter
due to the use of very restrictive theoretical assumptions. In Ref. [30],
CLAP output and error signals were linearly combined using attenua-
tion factors directly related to instantaneous SNR. This approach
provides poor results when unvoiced speech and uncorrelated noise
occur simultaneously. Hence, low-cost reduction of uncorrelated noise
remains an open issue of great interest for hearing-aids designers.

This work proposes a complementary low-cost technique for
broadband noise reduction in hearing-aids for pre-processing
of noisy-speech signals before narrowband noise reduction. Clean

speech is estimated using a convex combination of the original
contaminated signal and the output of a linear predictor. The
convex combination weight factor establishes a trade-off between
uncorrelated noise reduction and unvoiced speech distortion. An
adaptive version of the algorithm is proposed. The proposed system
is fitted to hearing-aid applications due to three main requirements:
(a) availability of a narrowband noise reduction system to alleviate
acoustical discomfort due to CLAP coefficient fluctuations and to
reduce narrowband noise; (b) small signal processing time delay
(since 6 to 8 ms delays can be undesirably perceived by users, while
over 10 ms can be considered annoying [1]); and (c) low extra
computational cost (in addition to the processing load previously
existent in the hearing aids processing system). The problem is
mathematically described in Section 2. Section 3 briefly reviews the
prediction of a signal immersed in noise. Section 4 presents the
proposed method and its optimization strategy. Section 5 presents a
simple adaptive implementation of the proposed technique. Section 6
shows simulation results using synthetic and real speech signals. The
results obtained corroborate the theoretical derivations and illustrate
the performance of the proposed method. Final conclusions are
presented in Section 7,7. The proposed method would be particularly
useful for commercial devices inwhich it would be used together with
an existing narrowband noise reduction system [17,18,31]. Throughout
this text, bold uppercase and lowercase letters represent matrices and
vectors, respectively, while italics represent scalars.

2. Problem description

The sampled acoustic signal at time instant n is modelled as the
sum of a speech signal x(n) and noise η(n), resulting in

yðnÞ ¼ xðnÞþηðnÞ: ð1Þ
here, noise η(n) is assumed stationary, independent of x(n), zero-
mean with power sη

2 and with a small correlation-length so that
|E{η(n)η(n�k)}|rε for kZK, where ε is a very small constant and K
is a finite integer smaller than the speech correlation-length. Noise
is white in the particular case of K¼1 and ε¼0.

Speech signal x(n) has zero mean with power sx
2 and is

modelled by an autoregressive process with a small correlation-
length for unvoiced utterances or a large correlation-length for
voiced utterances. The model coefficients are assumed constant in
a given time window (about 20 ms).

The mean-square prediction-error (MSPE), resulting from pre-
dicting the clean speech x(n) by the unprocessed (contaminated)
speech y(n), is given by

JUS ¼ E xðnÞ�yðnÞ½ �2
n o

¼ s2
η ; ð2Þ

where E{ � } denotes statistical expectation.

3. Prediction of a signal immersed in noise

The Wiener filter is a widespread noise reduction technique that
presents a known trade-off between speech distortion and noise
reduction. Since noise and speech usually share the same frequency
range, noise statistics are usually estimated during voice pauses.
In practical applications, large time periods between estimations
can lead to substantial degradation of the noise reduction process.
However, assuming noise has a small correlation-length compared
to the speech, a prediction approach can be used to continuously
compute pseudo-optimum noise reduction filters without signifi-
cant performance loss.

5 The correlation length of a random signal x(n), with exponential decaying
autocorrelation function, is defined as LX ¼∑1

l ¼ 0EfxðnÞxðn� lÞg=Efx2ðnÞg [32]. It
measures the signal memory.

6 This condition can be found in low-cost or severely limited computational
systems, as is the case of hearing aid devices. 7 Preliminary results were published in [53].
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Prediction of a desired signal x(n) immersed in noise consists in
obtaining an estimate of x(n) from the knowledge of a window of
past values of the contaminated signal y(n) [32]. One simple and
popular method to achieve this is the forward linear predictor
(FLP) [33,34] shown in Fig. 1. Results without significant distortion
can be achieved in speech applications if the noise η(n) in Eq. (1)
has a significantly smaller correlation-length than that of speech
signal. For a window of stationarity, FLP output is given by the
following inner product

x̂LðnÞ ¼ cTyðn�ΔÞ; ð3Þ

where the optimal value of Δ for noise reduction lies in the interval
between the correlation-length of speech and the correlation-
length of noise [33], y(n�Δ)¼[ y(n�Δ) y(n�Δ�1) … y(n�Δ
�Nþ1)]T and c¼[c0 c1 … cN�1]T, where ci, for i¼0,1,…,N�1 are
the linear prediction coefficients. The minimum MSPE of FLP is
[34]

JLPðcoÞ ¼ E ½xðnÞ� x̂LðnÞ�2
� �¼s2

x �cToRyyco; ð4Þ

where Ryy¼E{y(n)yT(n)}, and the point of minimum MSPE is [34]

co ¼ R�1
yy rxxΔ ; ð5Þ

where rxxΔ¼E{x(n)x(n�Δ)}, and x(n�Δ)¼[x(n�Δ) x(n�Δ�1) …
x(n�Δ�Nþ1)]T.

As x(n) is quasi-stationary, the solution in Eq. (5) becomes
time-varying and must be tracked through successive windows of
quasi-stationarity. The following analyses and derivations assume
stationary signals.

3.1. Noise reduction versus speech distortion

From Eq. (5), using Rxx¼E{x(n)xT(n)}, SNR¼sx
2/sη

2 and assum-
ing for (illustrative) convenience that Rηη¼sη

2 � I, leads to Ref. [9]

co ¼
I

SNR
þ ~Rxx

� ��1
~rxxΔ ; ð6Þ

where Ryy¼RxxþRηη (independence between speech and noise)
was applied. The normalized autocorrelation matrix and normal-
ized cross-correlation vector are respectively defined as

~Rxx ¼
1
s2
x
Rxx; ~rxxΔ ¼

1
s2
x
rxxΔ : ð7Þ

The two normalized statistics in Eq. (7) are invariant to power
changes in x(n) and η(n). For extreme SNRs, (6) turns into

SNR-0 ) co-0

SNR-1 ) co- ~R
�1
xx ~rxxΔ

: ð8Þ

Eq. (8) clearly shows that there will be no signal at the opti-
mum FLP output in the absence of speech signal (SNR-0 and co-
0¼[0 0 … 0 ]T). However, very high SNRs can also lead to signal
cancelling at optimum FLP output. For instance, if the correlation-
length of a given speech epoch is smaller than Δ, rxxΔ entries will
be zeros or very small values. Thus, it is imperative to investigate
under which conditions the FLP is suitable for noise reduction.

From Fig. 1, it is possible to verify that y(n)¼e(n)þ x̂LðnÞ. Using
Eq. (1) in Eq. (3) results in

x̂LðnÞ ¼ xðnÞ�xNðnÞþηPðnÞ; ð9Þ
where ηP(n)¼cTη(n�Δ) and xN(n)¼x(n)�cTx(n�Δ) are called the
residual noise and the speech distortion, respectively [35]. Using
Eq. (9) in Eq. (4), and assuming the optimal setting c¼co, FLP
MSPE in Eq. (4) can also be given by

JLPðcoÞ ¼s2
xN þs2

ηP
; ð10Þ

where

s2
xN ¼ E x2NðnÞ

� �jc ¼ co ¼ E ½xðnÞ�cToxðn�ΔÞ�2� �
¼s2

x �cToRxxco�2cToRηηco ð11Þ
is the speech distortion power, and

s2
ηP
¼ E η2PðnÞ

� �jc ¼ co ¼ E ½cToηðn�ΔÞ�2� �¼ cToRηηco ð12Þ

is the residual noise power.
The prediction improvement obtained by using FLP can be

assessed by the ratio GLP of JUS in Eq. (2) and JLP(co) in Eq. (4)

GLP ¼
JUS

JLPðcoÞ
ð13Þ

MSPE improvement occurs whenever GLP41. In this situation,
using (2) and (10) in Eq. (13) we obtain the following condition

s2
η 4s2

xN þs2
ηP

ð14Þ

i.e. the linear predictor is useful (MSPE-wise) only when noise power
is bigger than the combined sum of residual noise power and speech
distortion inserted by FLP. This condition is usually satisfied during
voiced utterances, when the uncorrelated portion of the contami-
nated speech signal y(n) is basically associated with additive noise.
Conversely, the amount of distortion inserted during unvoiced
utterances can exceed the advantages obtained by noise reduction,
compromising speech naturalness and intelligibility.

4. Proposed method

The proposed architecture, shown in Fig. 2, aims to provide
some control in the inserted distortion during unvoiced utterances
or noise-only periods and was motivated by Refs. [9] and [29]. Its
output signal is given by

x̂ðnÞ ¼ yðnÞ�αeðnÞ ¼ ð1�αÞyðnÞþαx̂LðnÞ ð15Þ
This structure estimates clean speech by a convex combination

[36] of the unprocessed signal y(n) and the FLP output x̂LðnÞ. The
convex combination parameter α is designed to obtain improve-
ments in both comfort and naturalness (under different SNR
conditions) over the conventional FLP solution for speech utter-
ances with distinct statistical characteristics. For such, α should
tend to unity during voiced utterances, since these signals can be
appropriately estimated by FLP. In the case of unvoiced utterances,
the choice of α establishes a trade-off between speech distortion
and noise reduction. A first attempt to find the optimum para-
meter α was presented in Ref. [29]; however, the unrealistic

Fig. 1. Forward linear predictor.

Fig. 2. Proposed structure.
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assumption that the CLAP provides perfect predictions of speech
ruled out accurate results.

4.1. Cost function

The MSPE for the structure in Fig. 2 is determined by

JPMðc; αÞ ¼ E ½xðnÞ� x̂ðnÞ�2g� ð16Þ
Using (1), (3) and (15) in Eq. (16) we obtain

JPMðc; αÞ ¼ E ½αxðnÞ�ð1�αÞηðnÞ�αcTyðn�ΔÞ�2� � ð17Þ
Its manipulation yields

JPMðc; αÞ ¼ α2E x2ðnÞ� �þð1�2αþα2ÞE η2ðnÞ� �
�2αð1�αÞE xðnÞηðnÞ� ��2α2E xðnÞxT ðn�ΔÞ� �

c

�2α2E xðnÞηT ðn�ΔÞ� �
cþ2αð1�αÞE ηðnÞyT ðn�ΔÞ� �

c

þα2cTE yðn�ΔÞyT ðn�ΔÞ� �
c ð18Þ

Considering the statistical independence of x(n) and η(n) and
assuming Δ large enough so that E{y(n�Δ)η(n)}¼0, yields

JPMðc; αÞ ¼ α2s2
yþð1�2αÞs2

η �2α2rTxxΔ
cþα2cTRyyc; ð19Þ

where sy
2¼E{y2(n)}¼sx

2þsη
2. For the optimum FLP coefficient

vector co, (19) yields

JPMðco; αÞ ¼ ðs2
y�cToRyycoÞα2�2s2

η αþs2
η : ð20Þ

4.2. Optimal convex combination

Eq. (20) is a quadratic function that can be minimized by
making its gradient with respect to α equal to zero. The optimal
coefficient α is then

αo ¼
s2
η

s2
y�cToRyyco

: ð21Þ

In Eq. (21), coTRyyco is the FLP output power for the optimal
coefficient vector co.

4.3. Minimum mean square prediction error

Using (21) in Eq. (20) and knowing that sy
2¼sx

2þsη
2, the

minimum MSPE of the proposed technique is given by

JPMðco; αoÞ ¼
ðs2

x �cToRyycoÞs2
η

ðs2
x �cToRyycoÞþs2

η

: ð22Þ

The FLP-MSPE ratio and that of the proposed technique can be
obtained dividing (4) by Eq. (22), resulting in

GPM ¼ JLPðcoÞ
JPMðco; αoÞ

¼ 1þ JLPðcoÞ
JUS

¼ 1þ 1
GLP

: ð23Þ

where the last equality comes from using (13).
Since GLP is always positive (it is a ratio between mean square

values), (23) shows that the structure in Fig. 2 always yields a
better MSPE-wise clean speech signal estimate than that of the
structure in Fig. 1 (since 1/GLP40 for any GLP, resulting in GPM41).

4.4. Interpretation of the optimal convex combination parameter

From Eq. (21) we can come to

αo ¼
1

1þðs2
x �cToRyyco=s2

η Þ
: ð24Þ

Using (2), (4) and (23) in Eq. (24) we obtain

αo ¼ 1
1þð1=GLPÞ

; ð25Þ

where GLP is the FLP noise reduction gain in relation to the original
contaminated signal, as defined in Eq. (13). A gain GLP41 indicates
that the FLP MSPE is smaller than the MSPE obtained by using the
unprocessed signal. The parameter GLP can also be expressed as

GLP ¼
ðs2

x=ðs2
xN þs2

ηP
ÞÞ

ðs2
x=s2

η Þ
¼ SNRx̂L

SNRy
; ð26Þ

i.e. it is the ratio between the signal-to-prediction-error ratios for
the FLP-processed signal and for unprocessed speech. For noiseless
speech, SNRy-1. Then GLP-0 and αo-0; thus, the output of the
proposed structure is x̂ðnÞ ¼ yðnÞ. In case there is only noise
(SNRy-0), then GLP-1, αo-1 and thus x̂ðnÞ ¼ x̂LðnÞ. When SNRy

is finite and nonzero:

SNRx̂L-1 ) αo-1 ) x̂ðnÞffi x̂LðnÞ
SNRx̂L-0 ) αo-0 ) x̂ðnÞffiyðnÞ ð27Þ

The first case in Eq. (27) is characteristic of voiced utterances
(in which FLP can adequately estimate speech signals), while the
second one refers to unvoiced utterances. For unvoiced speech
utterances contaminated by uncorrelated noise x̂ðnÞ ¼ ð1=ð1þ
1=SNRÞÞ � yðnÞ and, as a consequence, the output of the system
will be a scaled version of the input (volume control) as a function
of the signal to noise ratio.

4.5. Robustness against correlated noise

As pointed out by Ref. [19] there are daily-life situations in
which hearing-aid users are preponderantly subjected to broad-
band noise. However, it is recognized that the majority of situa-
tions are characterized by correlated noise. So, it is mandatory to
assess the robustness of the proposed method under such condi-
tion. Assuming now that the acoustic input signal y(n) is given by a
mixture of speech s(n), large correlation-length (e.g. speech-like)
noise v(n), and small correlation-length noise η(n), we have y(n)¼
x(n)þη(n) where x(n)¼s(n)þv(n). Assuming v(n) is independent
of s(n) and η(n), and that v(n) can be modelled by an AR process
with time-varying parameters [37] (in a window of quasi-statio-
narity), although not exact, x(n) can also be approximated by an AR
process [38], whose coefficients can be estimated from the sum
of the individual autocorrelation coefficients of s(n) and v(n) [39].
As a result, the FLP coefficient (c¼[c0 c1 … cN�1]T) behaviour can
still be predicted by its well-established theory [34] by using
Rxx¼RssþRvv. Proceeding in the same way from Eqs. (15) to (25)
leads to

αo ¼ 1
1þððs2

sN þs2
vN Þ=s2

η Þ
; ð28Þ

where ssN
2 and svN

2 are the variances of the unpredictable parts of
s(n) (ss

2¼ssP
2þssN

2) and v(n) (sv
2¼svP

2þsvN
2), respectively.

Eq. (28) generalizes Eq. (25) for sv
2a0, and, despite being a

function of svN
2, demonstrates robustness against additive corre-

lated noise, once svN
25sv

2. As the power of the innovation of the
correlated noise increases (svN

2-1), αo decreases (αo-0), and
the algorithm output is biased towards the unprocessed input
signal x̂ðnÞ-yðnÞ (in this case speech is totally preserved, and the
effort to reduce noise must be performed by the hearing-aid
correlated-noise-reduction unit).

5. Adaptive implementation

Several adaptive strategies can be used to track the FLP
optimum solution presented in Eq. (5) for quasi-stationary signals.
As each new sample is made available, the chosen algorithm
calculates a new set of predictor coefficients. This mechanism
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permits the tracking of statistical characteristics of the involved
signals. LMS, NLMS, and Leaky-LMS algorithms are examples of very
low computational cost strategies. Variable convergence speed con-
trol techniques adapted to the speech signal nature [40] can also be
applied to improve robustness and performance.

The conventional linear adaptive predictor is based on the
popular LMS algorithm and its update equation is given by

cðnþ1Þ ¼ cðnÞþμeðnÞyðn�ΔÞ; ð29Þ
where e(n)¼y(n)� x̂LðnÞ¼y(n)�cT(n)y(n�Δ) is the prediction error
and μ is the convergence step. This choice is computationally simple
and facilitates the understanding of the proposed noise reduction
scheme. In typical CLAP noise cancellers, delay Δ varies continuously
according to the instantaneous pitch of speech. Here, a fixed Δ is
considered for simplicity.

Assuming convergence of Eq. (29), it is well known that the LMS
steady-state mean-weight vector equals the optimal solution (5).
Thus [34],

lim
n-1

E cðnÞ� �¼ R�1
yy rxxΔ ¼ co ð30Þ

5.1. Practical implementation issues

In order to obtain a real-time dynamic approximation to the
optimum parameter αo, in real conditions, the following estimator
can be used (see Eq. (21))

α̂oðnÞ ¼
s2
η ðnÞ

s2
yðnÞ�s2

x̂L
ðnÞ; ð31Þ

where sη
2(n) is an estimate of the instantaneous additive noise

power, which can be estimated when a voice activity detector
(VAD) indicates absence of speech, sy

2(n) is an estimate of the
input signal power, and s2

x̂L
ðnÞ is an estimate of the FLP output

power. These estimates can be obtained in different ways [41]. One
very simple strategy can be implemented by using two recursive
first order low-pass filters [17], given by

s2
wðnÞ ¼ τws2

wðn�1Þþð1�τwÞw2ðnÞ ð32Þ
where w2(n) represents e2(n) in the absence of speech, and for the
whole time, respectively (se

2¼sy
2�s2

x̂L
). Distinct attack and

release time constants can be used. Eq. (32) has unit gain at zero
Hertz and a time constant (in s) given by

τ¼ Tsamp

lnðτ�1
w Þ; ð33Þ

where Tsamp is the sampling period.

5.2. Robustness against correlated noise

Following the same assumptions presented in Section 4.5,
using Rxx¼RssþRvv in Refs. [33], [42] and [43] permits predictions
of steady-state and transient performance of the first- and second-
order moments of the adaptive coefficients presented in Eq. (29).

Assuming convergence of the estimators in Eqs. (32) and (31)
tends to

α̂o ¼
1

1þðs2
sN=ðs2

η þs2
vN ÞÞ

: ð34Þ

Eq. (34) shows that the proposed αo estimator presented in
Eqs. (31) and (32) is robust to sv

2, once svN
25sv

2. Here, differently
from Eq. (28), an increasing of svN

2 leads to an increasing in α̂o. For
svN

2-1, then x̂ðnÞ-x̂LðnÞ, and the uncorrelated components of
both s(n) and v(n) are suppressed. In order to avoid that, estimations
of s2

x̂L
ðnÞ during voice absence (¼svP

2) should be monitored. This
information can be used to shut the algorithm down (α̂o-0) under
the existence of extremely unfavourable conditions (s2

vP ðnÞ4κ,
κAℜþ).

A step by step description of the implementation of the
proposed algorithm can be found in Table 1 (in which τa and τr
are respectively the attack and release time constants for the
denominator of Eq. (31); τη is the time constant for the numerator
of Eq. (31); τv is the time constant for x̂2L ðnÞ; and a limiter avoids
large estimation errors). Compared to CLAP the extra computa-
tional cost of the proposed method has only 10 multiplications,
5 sums and 1 division per iteration.

6. Results

This section presents simulations and application examples to
illustrate the performance of the proposed algorithm and corro-
borate the theoretical results obtained in the previous sections.

Table 1
Proposed algorithm: implementation steps and computational complexity.

Equation Comment Complexity

yðn�ΔÞ ¼ ½ yðn�ΔÞ ⋯ yðn�Δ�Nþ1Þ �T Input vector None

x̂LðnÞ ¼ cT ðnÞyðn�ΔÞ CLAP output N MUL, (N-1) SUM
eðnÞ ¼ yðn�ΔÞ� x̂LðnÞ CLAP error 1 SUM
cðnþ1Þ ¼ cðnÞþμeðnÞyðn�ΔÞ CLAP update equation (Nþ1) MUL, N SUM
if ðVAD¼ 0Þ

s2
η ðnÞ ¼ τηs2

η ðn�1Þþð1�τηÞe2ðnÞ
s2
x̂L
ðnÞ ¼ τvs2

x̂L
ðn�1Þþð1�τvÞx̂2L ðnÞ

Noise power 3 MUL, 1 SUM

3 MUL, 1 SUM
if ðzðnÞ4s2

z ðnÞÞ
then s2

z ðnÞ ¼ τas2
z ðn�1Þþð1�τaÞe2ðnÞ

else s2
z ðnÞ ¼ τrs2

z ðn�1Þþð1�τrÞe2ðnÞ

Denominator of Eq. (31) 2 MUL, 1 SUM

if ðs2
z ðnÞ4s2

η ðnÞÞ then s2
z ðnÞ ¼s2

η ðnÞ Limiter None

if ðs2
x̂L
ðnÞoκÞ

then α̂oðnÞ ¼ s2
η ðnÞ=s2

z ðnÞ
else α̂oðnÞ ¼ 0

Eq. (31) 1 DIV

x̂ðnÞ ¼ ð1� α̂oðnÞÞyðnÞþ α̂oðnÞx̂LðnÞ Eq. (16) 2 MUL, 2 SUM
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6.1. Simulated signals

Initially, the proposed method and CLAP were compared under
completely known conditions to quantify the convex combination
coefficient α and SNR influences. Two artificial input signals were
used: (1) a simulated unvoiced utterance modelled by a 22 order
autoregressive (AR) process [44], obtained by applying Burg0s
method to a 22 millisecond real speech epoch of the phoneme /s/;
(2) a simulated voiced sound obtained in the same way as
described before, but originated from the phoneme /a/. Both pho-
nemes were produced by a male speaker. The sampling freque-
ncy was 15.625 kHz, and an ideal VAD was used to signal the
beginning and ending of each utterance. Fig. 3 shows that the
correlation-lengths are significantly different for these signals.
The number of adaptive coefficients was N¼10, the convergence

step μ¼10�6, delay Δ¼1, additive noise was white Gaussian and the
SNRs used were (iv) 0.4, (iii) 3, (ii) 10.4, and (i) 20 dB. The optimal
convex combination parameter αo was calculated from the available
theoretical statistical parameters. Figs. 4 and 5 show the results
obtained. The plotted curves show the following MSPEs: (a) E{[x
(n)�y(n)]2}¼sη

2 (dotted), (b) E{[x(n)� x̂LðnÞ]2} (dashed), and (c) E
{[x(n)� x̂ðnÞ]2} (continuous). The CLAP output (dashed line) results
in a higher MSPE than that obtained from the unprocessed signal
for high SNRs (20 and 10.4 dB). This situation is reversed
for low SNRs (0.4 and 3 dB). This results from the fact that CLAP
not only reduces contamination noise but also uncorrelated com-
ponents (unvoiced sounds) of speech. For high SNRs, the noise
reduction savings obtained by CLAP are overcome by the inserted
amount of speech distortion. The optimal coefficient αo, calculated
from Eq. (21), is shown as an asterisk and clearly coincides with the
point of minimum of the proposed method curve for all SNRs. In
addition, αo results in an MSPE smaller than or equal to that
obtained by CLAP or unprocessed signal. It can also be seen that
the value of αo increases as SNR decreases. For SNR420 dB then
αoffi0, indicating that the best speech signal estimate is basically
obtained from the unprocessed signal. On the other hand, αoffi1 for
SNRo0 dB, indicating that the best estimate is obtained from the
CLAP output. In the 3 dBoSNRo10 dB range, there is a wide set of
values of α around αo that results in smaller MSPEs than those
produced by CLAP or the unprocessed signal. These results indicate
the robustness to errors of the proposed method in estimating αo.

6.2. Synthetic signals

The second example made use of a synthetic speech input-
signal designed for telephonometry applications [45]. Despite its
stationary behaviour, it has spectral characteristics similar to those
found in natural speech. Additive artificial noise was white
Gaussian and SNR¼�3, 0, 3, 10, and 20 dB (evaluated only during
speech occurrence). The parameters used were the same as those
in the first example, except sampling frequency, which was set to
16 kHz. An ideal VAD was used. The optimal convex combination
parameter was calculated previously, using the whole signals, and

Fig. 3. Autocorrelation functions of the simulated speech sounds. (a) unvoiced
sound, and (b) voiced sound.

Fig. 4. MSPE for simulated unvoiced sound. (i) SNR¼20, (ii) 10.4, (iii) 3, and (iv) 0.4 dB. (a) E{[x(n)�y(n)]2}¼sη
2 (dotted), (b) E{[x(n)� x̂LðnÞ]2} (dashed), (c) E{[x(n)� x̂ðnÞ]2}

(continuous). The asterisk shows αo (see Eq. (21)).
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was kept fixed during all signal processing. Four objective quality
criteria were used to quantify speech estimate performance, namely:
mean-square prediction-error (MSPE), weighted spectral slope
(WSS), Itakura–Saito measure (IS) and broadband (16 kHz) percep-
tual evaluation of speech quality measure (PESQ) [16]. MSPE, WSS
and IS present smaller indices for higher quality signals while the
PESQ relates a higher index to a higher quality. As expected, Fig. 6
consistently shows a smaller MSPE for the proposed method. CLAP
MSPE is practically constant, suggesting that the whole amount of
uncorrelated components is filtered out independently of its nature
(speech or noise), again as expected. As a result, CLAP presents good
performance only for small SNRs, whereas SNRs bigger than 5 dB

result in MSPEs higher than those obtained from unprocessed
signals. This occurs due to the attenuation of the uncorrelated part
of the speech. Such being the case, quality improvements due to
noise reduction are overcome by the degradation that results from
speech distortion. Fig. 6b shows that the proposed method presents
WSS indexes comparable to those provided by unprocessed speech.
These values are significantly smaller than those obtained from
CLAP. This can be explained by the fact that WSS penalizes large
distances in the spectral peak locations (formants), minimizing tilt
and overall level differences. From this, it can be inferred that, due to
a nonzero convergence step, the adaptation and tracking processes
lead to spectral peak distortions, degrading speech quality. The

Fig. 5. MSPE for simulated voiced sound. (i) SNR¼20, (ii) 10.4, (iii) 3, and (iv) 0.4 dB. (a) E{[x(n)�y(n)]2}¼sη
2 (dotted), (b) E{[x(n)� x̂LðnÞ]2} (dashed), (c) E{[x(n)� x̂ðnÞ]2}

(continuous). The asterisk shows αo (see Eq. (21)).

Fig. 6. Average score according to (a) MSPE (dB), (b) WSS, (c) IS, and (d) PESQ for the: (□) unprocessed signal, (○) signal processed by CLAP, and (◊) signal processed by the
proposed method. Synthetic (telephonometry) signal and additive white Gaussian noise.
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proposed method minimizes this effect, decreasing the coefficient
fluctuation contribution. Fig. 6c shows that, according to the IS index,
the proposed method results in significantly better clean speech
estimates. IS penalizes spectral global level differences between the
analyzed and the desired signals. Although this is not a very interest-
ing feature in psychoacoustics terms (studies have shown that
differences in spectral level have little effect on subjective speech
quality), the results obtained clearly indicate a decrease in contamina-
tion/distortion levels. The very high speech quality improvement
indicated by the IS index for signals processed by the proposed
method is probably related to the high uncorrelated signal content
of the synthetic signal used in telephonometric applications. With real
speech signals, quality improvements are still expected to be signifi-
cant in relation to the CLAP and the results obtained from unprocessed
signals, but moderate as compared to those obtained with the
synthetic signal. CLAP presented the highest IS indexes (poor quality)
for all tested SNRs. Fig. 6d shows comparative PESQ results. The PESQ
criterion measures distortions commonly found in telecommunica-
tion nets (loss of packets, delays, CODEC distortions) and presents a
high correlation with the subjective Mean Opinion Test. The results
obtained show a consistent quality degradation of the speech pro-
cessed by CLAP when compared to unprocessed speech (the same
phenomenon observed in WSS and IS criteria), and a significant
quality increase for signals processed by the proposed method.

6.3. Speech signals

The next two examples (Figs. 7 and 8) made use of real
(nonstationary) speech signals recorded by six (three male and three
female) speakers with different voice characteristics. Both were
analyzed under different SNRs (from �6 dB – extremely annoying
subjective condition to 36 dB – low contamination level, in steps of
3 dB). Results from the well-known Ephraim–Malah (EM) technique
[13] are also presented. Comparisons with the EM method were
provided so as to permit a general idea on the relative performance
of the proposed method in relation to other more complex techni-
ques. More expensive computational techniques, such as those based
in super-Gaussian methods [46,47], provide higher levels of noise
reduction and speech quality but at higher computational cost and a
larger global propagation delay (usually not tolerated by hearing-aid

users). Figs. 7 and 8 present the same symbol convention as Fig. 6,
but with the addition of EM results represented by asterisks
connected by a continuous line. Curves in Figs. 7 and 8 result from
the average of 50 and 15 runs (with different epochs of the same
noise signals), respectively, in order to obtain smooth curves.

In the first experiment (Fig. 7), the contamination noise was
white Gaussian noise, the delay was Δ¼1, μ¼0.1, N¼100 coeffi-
cients, τη¼0.999, τa¼0.99, and τr¼0.997. A real VAD [48] was used
to show the viability of the proposed algorithm in practical
applications. Careful visual inspection permitted the author to
conclude that this VAD produced accurate estimates of speech
activity for SNR46 dB. Fig. 7 refers to a male speaker and the
results obtained corroborate the same basic tendencies observed
in Fig. 6 for MSPE, WSS and PESQ. Clearly, and as expected due to
its higher complexity, the Ephraim–Malah technique presented
the best quality results according to PESQ (for SNR430 dB the
unprocessed signal presents a very good quality and, as a result,
any processing will degrade it). However, for medium to high SNR
the EM intrinsic nonlinear processing produced higher MSPE, WSS
and IS indexes when compared to the unprocessed signal. CLAP
inferior performance can be attributed to coefficient fluctuation
and musical noise effect (characterized by spurious peaks in the
spectrum and excessive attenuation of uncorrelated signals).
Compared to the CLAP and EM, the proposed technique presented
a superior MSPE performance for SNR46 dB. Compared to the
unprocessed signal and CLAP, the presented example suggests that
the proposed technique can improve PESQ scores in the range of
6 dBoSNRo30 dB. For SNR430 dB the proposed method pre-
sented the same PESQ indexes as those of the EM and CLAP
techniques. Despite some variability (due to speech content and
individual pitch), similar results were obtained for all six speakers.
Fig. 7d suggests that the performance of the proposed method
could only be comparable to that of EM in high SNR conditions.

Fig. 8 presents the results of the experiment in which a real
acoustic (nonstationary) wind-noise, sampled at near-Nyquist
frequency rate, with a small correlation-length (whose normalized
autocorrelation decays below 70.05 after 18 lags and below
70.03 after 65 lags) was used to additively contaminate the (real)
speech input signal. Due to the non-white noise statistical char-
acteristic, a delay of Δ¼20 was used. Roughly, the same basic

Fig. 7. Average score according to (a) MSPE (dB), (b) WSS, (c) IS, and (d) PESQ for the: (□) unprocessed signal, (○) signal processed by CLAP, (◊) signal processed by the
proposed method, and (n) signal processed by the EM technique [13]. Real speech signal (male speaker) and white Gaussian noise.
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results showed in Figs. 6 and 7 were obtained. It is worth pointing
out that for SNRo30 dB the proposed method resulted in PESQ
indexes higher than those obtained by both CLAP and unprocessed
signal. The PESQ results also suggest that the proposed method
can not only alleviate speech distortions produced by CLAP but
also improve the speech quality in medium to high SNR range
(18 dBoSNRo27 dB). For SNR430 dB speech distortion intro-
duced by all methods (EM, CLAP and proposed one) resulted
in lower PESQ than that of the unprocessed signal. Experiments
showed that, as the delay Δ was increased, there was a decrease
in the processed signal quality due to an increased loss of some
low-correlated intrinsic speech components. The delay choice is
directly associated with a trade-off between the desired noise
reduction and the maintenance of the speech quality obtained by
the prediction process. Despite the superiority of the EM techni-
que, its implementation requires computational resources and
processing time delays, sometimes unavailable in some hearing-
aids. Thus, the proposed method aims to obtain a performance
improvement in adaptive prediction-based systems with a mini-
mum increase in complexity. Despite using a real noise signal, this
example dealt with a mild nonstationary condition; severe non-
stationarities, such as abrupt changes in noise power level, may
affect the tracking of the optimum convex combination parameter,
resulting in undesirable power fluctuations at the output, and
requiring more elaborated strategies.

6.4. Subjective analysis

A preliminary Degradation Category Rating Test with eight volun-
teers was performed to assess the subjective performance of the
proposed method. In this experiment two different sentences (in
Brazilian Portuguese: “os pesquisadores acreditam nessa teoria” and
“ela saía discretamente” meaning, respectively, “the researchers
believe in this theory” and “she went out quietly”) uttered by two
individuals (one male and one female) in a 125m³ (free volume) semi-
anechoic chamber were acquired by a microphone Le Son ML-70S and
a hand-held professional digital recorder (Microtrack-II model 2496
from M-Audio) with a sampling frequency of 16 kHz. Beginning
and end of speech segments were manually annotated emulating an
ideal VAD. Speech signals were contaminated by a nonstationary

small-correlation-length artificial noise (whose normalized autocorre-
lation decays below 70.05 after 6 to 17 samples), resulting in twelve
contaminated speech signals (6 male and 6 female) with SNRs
equal to 18, 21, 24, 27, 30 and 33 dB. Such contamination levels
can be distinguished by untrained listeners and were chosen in ord
er to represent conditions found in daily-life, no intelligibility pro-
blems were reported. The used parameters were a delay of Δ¼20
and N¼100 coefficients. For each signal, the following sound files
were generated: (a) clean speech; (b) contaminated speech (DIRTY);
(c) contaminated signal processed by a narrowband noise reduction
system (NNRS); (d) contaminated signal processed by CLAP followed
by a NNRS processing (CLAPN); and (d) contaminated signal processed
by the proposed method followed by NNRS processing (NEWN). The
narrowband noise reduction system is a software-based proprietary
noise-reduction algorithm (Acústica Amplivox Company Ltda), espe-
cially designed for hearing-aid devices, consisting of a filter-bank
architecture similar to the one described in Ref. [17]. The purpose of
including such a system is to permit the assessment of the noise
reduction system global performance in real hearing-aid applications,
since narrowband and broadband noise reduction must be both
performed in order to obtain adequate sound quality and acceptabi-
lity by the user. NNRS reduces small amounts of side-effect speech
distortions caused by the adaptive predictor (due to coefficient
fluctuations and musical noise) which could result in unsatisfactory
performance. Eight volunteers (four male and four female) without
hearing complaints were selected for subjective evaluation of the
sound files. Each volunteer was instructed to comparatively quantify
the subjective quality of each set (out of twelve) of five speech files
(related to the same sentence and SNR) in a continuous scale from �5
(worst) to 5 (best) where the midscale (zero) was associated with the
clean (uncontaminated) speech file. The results obtained are shown in
box and whisker diagrams where the set of sample values comprised
between the lower and upper quartiles (denominated by q1 and q3,
respectively) is represented by a rectangle whose median is indicated
by a bar. The sample values are considered outliers when greater than
q3þϖ � (q3–q1) or less than q3�ϖ � (q3–q1), whereas q1 and q3 are
defined as the percentage values of 25 and 75%, respectively. Variable
ϖ is defined as the default value of 1.5 [49] and represents the upper
and lower extremes, which are not considered outliers. The vertical
axis indicates subjective satisfaction and the horizontal one presents

Fig. 8. Average score according to (a) MSPE (dB), (b) WSS, (c) IS, and (d) PESQ for the: (□) unprocessed signal, (○) signal processed by CLAP, (◊) signal processed by the
proposed method, and (n) signal processed by the EM technique [13]. Real speech signal (female speaker) and small correlation-length (nonstationary) real wind-noise.
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the associated type of processing. The plus signal (þ) indicates the
presence of an outlier.

Fig. 9 shows the results obtained for SNR¼24, 27 and 30 dB.
The horizontal dotted line indicates the clean speech score (fixed
in zero). The median of contaminated speech was negative (worse
quality than clean speech) for all tested SNR. Despite having the
highest level of noise reduction, CLAPN presented score results
close to the ones of the contaminated signal. This can be explained
due to the undesired cancelling of unvoiced speech components
and the associated quality degradation (see Section 6.1). Despite
intelligibility maintenance, speech processed by CLAPN sounds
muffled, displeasing normal hearing people due to its lack of
naturalness. Apparently, normal hearing volunteers overvalued
naturalness compared to noise reduction. This aspect must be
taken into consideration and results of this work must be analyzed
with care, since they could not be completely applied to hearing
impaired people, due to significant differences in the sensitivity of
the hearing system. For severe hearing-impaired people, an
increase in CLAPN scores (as compared to contaminated speech)
is expected [50]. Such characteristic seems to justify its use in
hearing-aid applications.

The NEWN processing resulted in a consistent increase of speech
quality when compared to CLAPN for all tested SNRs. This result
agrees with those presented in Section 6.1. Comparisons with single
NNRS processing showed that the proposed algorithm produces a
better subjective quality for SNRZ24 dB (for SNR¼33 dB both NNRS
and NEWN presented similar performances since the noise contam-
ination level is very low). Still in the SNRZ24 dB range, the NEWN
frequently resulted in higher scores than those associated with clean
signals. This occurred due to the reduction of audible microphone
electric noise associated with speech recordings, especially during
voiced sound periods. For SNRo24 dB the NEWN median score was
lower than the median of the contaminated speech. This probably
happened because of predictor coefficient fluctuations (due to the
tracking process) associated with high contamination noise levels
(see Fig. 6b and text explanation in Section 6.2). Interviews with
volunteers after the experiments confirmed that the main complaint

on the quality of the speech processed by NEWN, that originated
the low scores given by some volunteers (especially for SNRo24 dB),
refers to the (side-effect) subjective sensation of low-frequency
amplitude modulation of speech along the sentences. This probably
results from large variance estimates of the instantaneous additive
noise power, input signal power, and FLP output power, which lead
to significant αo(n) fluctuations. One possible strategy to alleviate this
problem would be low-pass filter Eq. (31).

Fig. 10 shows spectrograms of one experiment in which a male
speech was contaminated with SNR¼27 dB. Hot colours mean
higher magnitudes while cold colours mean lower ones. Clean
speech is presented in Fig. 10a. Contaminated speech is presented
in Fig. 10b. Comparisons between Fig. 10a and Fig. 10b show an
increase in the noise floor after contamination especially noticeable
during pauses (the original blue levels in Fig. 10a have changed to
green in Fig. 10b). Similarity between noise floors in Fig. 10b and
Fig. 10c indicates the lack of capability of NNRS to reduce broadband
noise. CLAPN result is shown in Fig. 10d. It restored the original noise
floor during pauses but also excessively reduced high-frequency
speech components during unvoiced utterances, originating a muf-
fling sensation. NEWN, shown in Fig. 10e, apparently restored the
original background noise floor, especially during pauses, with a
small noticeable distortion of the original spectrum in relation to the

Fig. 9. Subjective evaluation of speech signals contaminated by a small correlation-
length nonstationary artificial noise. SNR: (a) 24; (b) 27, and (c) 30 dB. Contami-
nated speech (DIRTY); contaminated speech processed by the narrowband noise
reduction system (NNRS); contaminated speech processed by CLAP followed by
NNRS (CLAPN); and contaminated speech processed by the proposed method
followed by NNRS (NEWN). The dotted line represents the clean speech score.

Fig. 10. Spectrograms of a real speech signal (male speaker) contaminated by a
small correlation-length nonstationary artificial noise for SNR¼27 dB. (a) clean
speech; (b) contaminated speech; (c) contaminated speech processed by the
narrowband noise reduction system (NNRS); (d) contaminated speech processed
by CLAP followed by NNRS (CLAPN); (e) contaminated speech processed by the
proposed method followed by NNRS (NEWN). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)
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NNRS. Speech spectrum variations resulting from NEWN processing,
as compared to uncontaminated speech, can be attributed to the
intrinsic trade-off between noise reduction and speech distortion.

6.5. Robustness to correlated noise

Finally, simulations were performed to demonstrate the beha-
viour of the adaptive algorithm from a holistic viewpoint. Mixtures
of speech s(n), small correlated-length noise η(n) and speech-like
noise v(n) were processed by the proposed adaptive algorithm,
followed by the narrowband noise reduction system described in
the previous section. Here, results for a male speaker, a speech-like

noise generated from the AR model presented in Section 6.1
(phoneme /a/), and artificial white noise are shown. The algorithm
used the same parameters as described in the first experiment
of Section 6.3. Each plot in Fig. 11 refers to a different SNRUNC

(¼�10, 0, 10, 20, 30, 1) that defines the signal to noise ratio
between speech and white noise (SNRUNC¼10 � log10(ss

2/sη
2)). The

abscissa of each plot refers to the ratio between speech and
speech-like noise powers (SNRCOR¼10 � log10(ss

2/sv
2)), while the

ordinate refers to PESQ quality of the output signal. Speech power
is kept fixed in all simulations. Results from the Ephraim–Malah
technique [13], CLAP output processed by the NNRS, and con-
taminated speech are also presented. Analysis of Fig. 11 clearly

Fig. 11. PESQ for a mixture of speech, small-correlated and speech-like noise. (a) SNRUNC¼�10; (b) SNRUNC¼0; (c) SNRUNC¼10; (d) SNRUNC¼20; (e) SNRUNC¼30 dB;
(f) SNRUNC¼1 dB. Ephraim–Malah technique [13] (n), CLAP followed by NNRS (o), contaminated speech (□), proposed method followed by NNRS (◊).

Fig. 12. MSPE for a mixture of speech, small-correlated and speech-like noise. (a) SNRUNC¼�10; (b) SNRUNC¼0; (c) SNRUNC¼10; (d) SNRUNC¼20; (e) SNRUNC¼30 dB;
(f) SNRUNC¼1 dB. Ephraim–Malah technique [13] (n), CLAP followed by NNRS (o), contaminated speech (□), proposed method followed by NNRS (◊).
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indicates that the performance of the proposed algorithm does not
collapse under correlated noise influence. The proposed technique
showed to be robust to correlated noise for SNRCOR40, and
presented a better performance than the CLAP for SNRCORZ�20
in all SNRUNC scenarios.

Fig. 12 refers to the MSPE behaviour for the same signals
presented in Fig. 11. It shows that the proposed technique basically
presents the same MSPE of the CLAP for SNRUNCZ0 dB.

The results reported here indicate the potentiality and practical
applicability of the proposed method and its adaptive low-cost
implementation, as well as the usefulness of the developed theoreti-
cal equations as guidelines for its optimum design. The results also
suggest that linear prediction methods (like CLAP) could be used as
complementary broadband noise reduction in hearing-aid applications
once some strategies are introduced to alleviate the excessive cancel-
ling of small-correlated portions of the speech. Such method, however,
must be accompanied by a narrowband noise reduction system to
filter out tracking effects (coefficient fluctuation) in adaptive imple-
mentations. The use of more complex adaptive methods and robust
power estimators is expected to widen the SNR range inwhich speech
quality improvement was obtained.

7. Conclusions

This work presented a complementary broadband noise reduction
scheme for hearing-aids. The optimum setting for maximum perfor-
mance was theoretically obtained, resulting in a smaller mean-square
prediction-error as compared to the conventional linear predictor.
Experiments with simulated and real signals corroborate the analy-
tical results for a low-cost adaptive implementation of the proposed
method. Four different objective quality measures indicate speech
quality improvement when compared with the conventional adaptive
predictor results. Preliminary Degradation Category Rating experi-
ments corroborate the expected results when the proposed algorithm
is followed by a narrowband noise reduction strategy in order to filter
out the effects of undesirable coefficient fluctuations. Low-cost digital
hearing-aids that make use of the conventional adaptive predictor
for broadband noise reduction can be easily modified to incorporate
the new proposal with a minimum amount of extra computational
resources.
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