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This paper presents a new proposal of a very low cost and highly efficient interference canceller to be
applied to biomedical signals. The power line reference is obtained from analog to digital conversion
while higher harmonics are mathematically estimated by means of trigonometric relations. These signals
are processed by an adaptive algorithm in order to suppress harmonic interference. Biomedical acquisi-
tion systems that incorporate a conventional adaptive canceller, whose reference signal is sampled from
power line, can be easily modified to improve interference suppression without hardware modifications.
Real application examples are supplied in order to demonstrate its usefulness in electroencephalographic,
electrocardiographic and auditory evoked potential signals.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Clinical interpretation of bioelectrical signals plays an important
role in the diagnostic of human being diseases. Important infor-
mation is frequently carried by small amplitude bioelectric signals.
Thus, several contamination sources can conceal critical informa-
tion [1]. Typical examples are baseline wander caused by varying
electrode-skin impedance [2] and additive electromiographic (EMG)
signals. The most common and important external interferences as-
sociated with bioelectric signals are, however, those originated from
the power line source [3]. Such additive disturbances are usually
modelled by: (1) a fixed frequency sinusoid with random phase and
amplitude (electrical field interference), and (2) higher order har-
monics due to magnetic fields originated from nonlinear character-
istics of the propagation path (e.g. main power transformer) [1] or
due to other equipments like fluorescent lamp reactors.

Several techniques have been developed to suppress power line
interference (60Hz or 50Hz) and its higher harmonics from bioelec-
tric signals [4,5]. Physical solutions such as shielding, grounding and
careful amplifier printed circuit board design are usually employed
[6]. Typically, such solutions are insufficient to provide the required
signal quality level. Conventional low-pass analog filtering tends to
severely attenuate signal components above its cut off frequency,
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which limits the system's frequency range. Such a limitation cannot
be tolerated in applications such as high-resolution electrocardio-
graphy [7]. Fixed notch filters have been widely used for interfer-
ence suppression and a variety of design techniques are available in
the specialized literature [8]. However, the efficiency of highly se-
lective fixed notch filters is compromised by power line frequency
variability [1,9].

Adaptive filtering is an alternative solution to power line interfer-
ence cancellation. The adaptive noise2 canceller (ANC) developed by
Widrow [10] has been shown to lead to significant interference sup-
pression in bioelectric signals. Its high selectivity, frequency tracking
capability, low distortion and low computational cost characteristics
are very attractive for bioelectric acquisition systems. Many modern
commercial systems incorporate adaptive (active) noise cancelling
techniques. Despite its excellent performance in 60Hz (50Hz) can-
cellation, the linear filtering structure of the ANC leads to a poor
performance when higher harmonics cancellation is necessary.

Nowadays, microprocessor-based systems find widespread use in
bioelectric signal acquisition. They offer higher resolution and better
quality and flexibility when compared to conventional analog instru-
ments [11]. Several digital signal processing methods are currently
applied to bioelectric signals to enhance clinical information and to
suppress interference. Nevertheless, the high computational cost of
many signal processing algorithms, the need for sharing the avail-
able computational resources among different tasks, which must be

2 In this context, the word “noise” is used as an equivalent to “interference”.
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executed at the system's sampling rate, and the need for multichan-
nel systems increase the demand for low computational cost pro-
cessing strategies.

This paper proposes an improvement on the conventional ANC
described in [10], which provides harmonic suppression with a min-
imal computational complexity increase. Moreover, it requires no
hardware modifications in systems that already embed a conven-
tional ANC (assuming the availability of an analog to digital con-
verter to sample the power line signal). The proposed algorithm is
an attractive solution for the implementation of low cost and high
quality bioelectric commercial acquisition systems.

This paper is organized as follows: Section 2 reviews the conven-
tional ANC. The harmonic cancelling problem is defined in Section 3.
Section 4 presents the new algorithm. Sections 5 and 6 present com-
parisons between the new strategy and the conventional ANC. Sec-
tion 7 presents the conclusions of this work.

2. The conventional ANC

The structure of the conventional ANC [10] is shown in Fig. 1.
Here, x(n) is the reference signal at time index n (power line samples
obtained by an analog to digital converter). z(n) is the bioelectrical
signal of interest and d(n) is its contaminated version. y(n) is the
interference cancelling signal produced by the adaptive filter and
e(n) is the output signal. Ideally, e(n) converges to the interference-
free bioelectrical signal z(n).H(n) represents a time-variant nonlinear
system responsible for the power line contamination.

The least mean square (LMS) update equation for the (single fre-
quency) ANC is given by [10]:

w(n + 1) = w(n) + �e(n)x(n) (1)

where w(n) = [w1(n) w2(n)]T is the adaptive weight vector and
x(n) = [xF(n) xQ(n)]T is the reference input signal, which consists
of the in-phase (xF(n)) and quadrature (xQ(n)) components of the
power line source. Signals xF(n) and xQ(n) are obtained through a
delay line with length depending on the relation between the power
line frequency (60Hz or 50Hz) and the sampling rate of the acqui-
sition system. The parameter � is called step size and is responsible
for the performance of the cancelling process. The identifier A in
Fig. 1 refers to the model for the contamination of the bioelectric
signal. Block B contains the canceller structure.

The adaptive canceller working principle is based on the fact that
a sinusoidal signal can be expressed by its in-phase and quadrature
components

x(t) = A cos(�t + �) = A1 cos(�t) + A2 sin(�t) (2)

where A1 = A cos(�) and A2 = −A sin(�) [12]. Assuming that H(n) is
linear and time invariant and that x(n) is sampled at a sufficient

Fig. 1. Block diagram of the Widrow's conventional adaptive noise canceller [10].

rate, the adaptive weights w1(n) and w2(n) converge to the opti-
mum values A1 and A2, respectively. In such a situation, the adap-
tive system output is equal to the interference-free bioelectric signal
(e(n) = z(n)).

3. Harmonic contamination

Several works in the literature demonstrate the ability of the
adaptive canceller in Fig. 1 to considerably reduce power line inter-
ference. However, obtaining high quality bioelectric signals requires
also cancellation of power line harmonics. Harmonics are originated
from nonlinearities in the propagation path (environment and elec-
tronic circuitry-block H(n) in Fig. 1). Since harmonics are orthogo-
nal signals, the adaptive canceller is unable to deal with this kind of
contamination due to its linear filtering structure (Fig. 1, part B).

Many adaptive filter techniques can be used to cancel harmon-
ics. However, they generally imply the need for unavailable compu-
tational resources and/or hardware requirements, especially in low
cost acquisition systems. This is the case when the acquired refer-
ence signal x(n) contains the main interference and its harmonics.
Satisfactory cancelling performance, by the LMS algorithm, requires
either a digital filter bank to separate desired harmonics, or a large
number of adaptive coefficients (since it is not possible to obtain in-
dividual in-phase and quadrature components for each harmonic). If
computational resources are not available, one possibility is the use
of an extra acquisition channel for each harmonic. However, such
a solution implies the use of additional electronic circuitry, such as
analog filters for frequency separation. These alternatives imply an
increase in computational and/or hardware complexity and, as a re-
sult, in the system's cost.

4. The proposed solution

The block diagram of the proposed algorithm is presented in
Fig. 2. The proposed structure is similar to the conventional noise
canceller presented in Fig. 1 but incorporates one block for harmonic
estimation (Fig. 2, part E) and one extra canceller for each estimated
harmonic (Fig. 2, parts Bi, i = 1,2, . . . ,N). In fact, it is a multichannel
version of Widrow's ANC associated with sinusoid estimators (mag-
nitude and phase) whose frequencies are synchronized multiples of
the reference signal. As shown in Fig. 2 no extra external reference
signals are used, and the hardware requirements are the same as
those for the conventional adaptive canceller. Thus, existing biomed-
ical acquisition systems can be modified with only a small change
in software and a small increase in computational complexity.

The main problem to be overcome in such architecture is
to obtain low cost and precise estimations of the power line

Fig. 2. Block diagram of the proposed adaptive noise canceller (60Hz notation).
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harmonics. Conventional estimators usually make use of spectrum
analysis methods, whose computational complexities are not afford-
able in low cost processors. As stated in Section 3, direct acquisi-
tion of individual harmonics will require undesired extra hardware,
while internal generation of reference signals would result in a per-
formance similar to that of conventional notch filters [13] (due to
deviations from the nominal main frequency [1,9]).

In this paper, the use of trigonometric relations applied to sam-
ples of the main power line signal to obtain synchronized estima-
tions of the higher harmonics is proposed. The main advantages of
this method, related to previous papers presented in the literature
[1,2,4,5,8,10,13], are:

• no need for extra acquisition channels;
• no need for filter banks or spectrum analysis methods;
• the number of harmonics can be easily increased (or decreased)
depending on the available microprocessor resources;

• tracking capacity (in case of frequency deviation);
• instantaneous, stable and reliable (high signal to noise ratio) esti-
mations;

• low computational cost;
• conventional cancellers can be easily updated.

Eq. (3) presents some well known trigonometric relations [12].
In order to preserve space, but without losing information, they are
presented until the fourth order⎧⎪⎨
⎪⎩
cos2(x) = 0.5 cos(2x) + 0.5

cos3(x) = 0.25 cos(3x) + 0.75 cos(x)

cos4(x) = 0.125 cos(4x) + 0.5 cos(2x) + 0.375

(3)

Rearranging the equations in (3) they result in⎧⎪⎨
⎪⎩
cos(2x) = 2 cos2(x) − 1

cos(3x) = 4 cos3(x) − 3 cos(x)

cos(4x) = 8 cos4(x) − 4 cos(2x) − 3

(4)

Upon analyzing (4) it is easy to verify that higher harmonics
estimations can be obtained from the instantaneous amplitude of
the power line interference. This simple technique has not yet been
exploited in adaptive interference cancellation.

As a result, at each discrete time instant n, higher harmonic sam-
ple estimations can be directly gotten from power line samples ob-
tained by analog to digital conversion in the following way:⎧⎪⎨
⎪⎩
x̂F120(n) = 2x2(n) − 1

x̂F180(n) = 4x3(n) − 3x(n)

x̂F240(n) = 8x4(n) − 4x̂F120(n) − 3

(5)

where the subscript F means in-phase component and the follow-
ing three numbers indicate the frequency of the estimated har-
monic (in this case, for a 60Hz power line: 120, 180 and 240Hz).
Quadrature components are obtained through a line delay whose
length is determined by the following equation:

x̂Qf (n) = x̂Ff

(
n − round

(
fsamp

4f

))
(6)

where round( · ) is the rounding operation, f refers to the desired
harmonic (120Hz, 180Hz, . . . ) and fsamp is the sampling frequency
of the acquisition system.

Eq. (6) determines that, for best performance, the sampling fre-
quency should be chosen in such a way that fsamp/(4f) is an integer
for each harmonic. However, exhaustive tests have demonstrated
that rough approximations can give very good results.

Intrinsic noise associated with the acquired power line signal,
quantization errors and noninteger values of fsamp/(4f) can result in

base line wander of the obtained estimations. In order to correct
this problem each estimated harmonic is processed by a one coeffi-
cient LMS adaptive algorithm. This adaptive filter has a constant in-
put signal, being responsible for maintaining a zero continuous (DC)
level.

The acquired reference signal is easily set to unit power since
it is obtained from a power line transformer that supplies a stable
waveform for the analog to digital converter. In general, the power
line root mean square (RMS) value is approximately constant. How-
ever, surgical environments can present energy disturbances due to
the switching of high loads, such as defibrillators and electrocau-
teries. In such cases, power fluctuations can be corrected through
a normalization factor applied to each sample. This factor is an in-
verse estimate of the power line peak amplitude and is given by (see
Appendix A for derivation)

k(n) = 2P

�
∑P−1

k=0 |x(n − k)| + �
(7)

where P is a multiple of fsamp/60 and � is the regularization factor
(to avoid division by zero and consequent overflow). The summation
in the denominator of (7) can be recursively evaluated in order to
minimize the computational cost. This procedure avoids the need
for automatic gain control strategies [14]. A step by step description
of the proposed algorithm can be found in Table 1.

5. Materials and methods

The proposed canceller was embedded in a low cost bioelectric
acquisition system (Fig. 3) developed to study anaesthetic depth
during surgery [15]. It allows the simultaneous acquisition of one
electrocardiographic (ECG) derivation, two electroencephalographic
(EEG) channels and power line reference. Auditory evoked potentials
are obtained from one of the EEG channels at sampling frequency
sufficient to perfectly depict midlatency auditory evoked potentials
(MLAEP) and to detect the presence or absence of brainstem audi-
tory evoked potentials (BAEP) [16].

This equipment consists of an acquisition module based on a
low cost 16-bit microcontroller (Intel N87C196KD-20) and an ex-
ternal portable host microcomputer (Intel Pentium III—450MHz). As
the microcontroller carries out several concurrent processes, such
as data conversion and data transfer to the host computer, only a
small part of its computational capacity is available. The proposed
canceller was implemented in the host computer, in a high-level
programming language (C language), with four references (60, 120,
180 and 240Hz), which provides real-time processed data for one
ECG derivation and three EEG channels, one of them being used for
obtaining auditory evoked potentials (MLAEP). The canceller can be
turned on and off by the user.

Signals from six healthy volunteers and seven patients undergo-
ing abdominal surgeries were acquired [17] in order to verify the
performance of the proposed algorithm. The first group of signals
was acquired at laboratory conditions. Four volunteers were male
and two female (mean age of 25 years and an 8 year standard de-
viation). The second group of signals consisted of two male and five
female (mean age of 50 years and an 18 year standard deviation)
patients subjected to cholecystectomy surgeries.

During surgeries the experimental protocol consisted of the fol-
lowing procedures: skin previously cleaned with Nuprep � abrasive
paste; Ten20 � conductive paste was used for the contact between
electrodes and scalp. Ag–AgCl pre-gel (Kendall 200 Meditrace � )
ECG electrodes were placed at LA and RA (derivation I); conven-
tional Ag–AgCl dry electrodes were placed at Cz-M1 (left mastoid)
and Cz-M2 (right mastoid), with reference at Fpz, according to the
10–20 International System. The auditory stimulator was adjusted
to generate clicks with 100�s, 110dBpeSPL (peak-equivalent sound
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Table 1
Proposed algorithm (60Hz notation).

xAC(n) = x(n) − w1(n) Input signal offset null

w1(n + 1) = w1(n) − �1xAC(n) Offset null adaptive filter

xAC = xAC(n) · · · xAC(n − p + 1)T Input vector

xF60(n) = 2P
�[XTAC (n)XAC (n)+�]

/xAC(n) Input signal normalization

x̂F120(n) = x2F60(n) − w2(n) Second harmonic estimation

w2(n + 1) = w2(n) − �2 x̂F120(n) Offset null adaptive filter

x̂F180(n) = x3F60(n) − 0.75xF60(n) Third harmonic estimation

w3(n + 1) = w3(n) − �2 x̂F180(n) Offset null adaptive filter

x̂F240(n) = 2x4F60(n) − 2x̂F120(n) − w4(n) Fourth harmonic estimation

w4(n + 1) = w4(n) − �2 x̂F240(n) Offset null adaptive filter

xn = [xF60xQ60(n)2x̂F120(n)2x̂Q120(n)4x̂F120(n)4x̂Q120(n)4x̂F240(n)4x̂Q240(n)]
T Signal buffer

e(n) = d(n) − wT (n)x(n) Processed signal

w(n + 1) = w(n) + �e(n)x(n) LMS update equation

Fig. 3. Block diagram of the acquisition hardware [15].

pressure level) compressing polarity and 8.3 stimuli/s for both ears.
The EEG-to-MLAEP channel gain was adjusted to a 200�V full
scale ( ± 100�V). Band-pass filters were set to 0.5–100, 1–100 and
10–200Hz for ECG, EEG and EEG-to-MLAEP channels, respectively.
Each band-pass filter was made up of a first order high-pass and a
second order low-pass. Sampling frequency was 1kHz for ECG, EEG
and power line signal, and 5kHz for EEG-to-MLAEP. An interpola-
tion routine on the external microcomputer was used to adapt the
power line samples for EEG-to-MLAEP interference cancelling.

Some laboratory acquisitions made use of intentional high
impedance electrode coupling and an approximate 30k� imbal-
ance between differential amplifier inputs in order to raise the
power line contamination in the bioelectric signals. The aim of such

condition was to verify the effectiveness of the new canceller under
high interference levels. The parameters of the adaptive canceller
were set to � = 0.05 and � = 10−6.

Comparisons between the performance of the conventional can-
celler and the proposed algorithm were obtained for ECG, EEG and
MLAEP signals. The presented results in Section 6 are representative
of a wide set of experiments.

6. Results and discussion

In order to permit comparisons between raw and processed data,
only off-line processing results are presented in this section (since
the acquisition system is unable to store both signals). No significant
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Fig. 4. Time evolution of the: (a) acquired ECG signal; (b) ECG signal processed by
the conventional canceller [10]; (c) ECG signal processed by the proposed algorithm.

differences were found in relation to on-line processing, once all
mathematical operations were performed in floating point format.

Fig. 4 shows results of the proposed canceller applied to ECG sig-
nal acquired from a healthy volunteer with high impedance elec-
trode coupling and high imbalance between differential amplifier
inputs. Fig. 4a shows the contaminated raw ECG signal, Fig. 4b shows
the ECG signal processed by the conventional canceller (Fig. 1) and
Fig. 4c shows the result obtained by using the proposed canceller
(Fig. 2). Clearly, Fig. 4c presents an ECG signal of higher quality when
compared with Fig. 4a and b. The significant increase in the signal-
to-interference ratio (SIR) is due to the harmonic suppression capa-
bility of the new algorithm. Fig. 5 presents the power spectrum of
ECG signals presented in Fig. 4. The new canceller can reduce not
only the main interference but also higher harmonics (120, 180 and
240Hz).

Fig. 6 presents the power spectrum of an EEG epoch (Cz-M1)
acquired under the same conditions as described in Fig. 4. Fig. 6a
corresponds to the original signal, Fig. 6b to the signal processed by
the conventional canceller and Fig. 6c to the result provided by the
new proposal. As in Fig. 5 (ECG case) the new canceller is able to
suppress higher harmonics and provide a better signal quality.

The conventional way for extracting MLAEPs is the synchronous
average of EEG samples under auditory stimuli [18,19]. A number
between 256 and 4096 of 100ms EEG epochs (average of 1000) is
usually needed to improve the usual 2�V/100mV signal-to-noise
ratio so that clinical analysis can be performed [16]. Such amount
of averaging, needed to minimize the background EEG influence
(considered noise in this case), suffices to minimize some exter-
nal interferences such as the main power line and its harmonics
when fractional stimuli are used (e.g. 8.3 stimuli/s). However, large
amplitude and high correlated muscular activity, such as eyeblinks
and movements from noncolaborative patients (i.e. children), signifi-
cantly deteriorate the averaged MLAEP, especially in small ensemble
applications (like in anaesthesiology monitoring). In order to avoid
such influence, evoked potential systems include artifact rejection
routines that reject any EEG epoch containing a voltage value ex-
ceeding a previously established threshold [20,21]. In clinical trials,
when the number of rejected epochs exceeds more than 10% of the
epochs available to evaluate one MLAEP, the entire ensemble should

Fig. 5. Power spectrum of the: (a) acquired ECG signal; (b) ECG signal processed by
the conventional canceller [10]; (c) ECG signal processed by the proposed algorithm.

Fig. 6. Power spectrum of the: (a) acquired EEG signal; (b) EEG signal processed by
the conventional canceller [10]; (c) EEG signal processed by the proposed algorithm.

be rejected [22]. In surgical monitoring, rejecting full ensembles is
not desired due to the lack of information on the patient's anaes-
thetic state. Extensive analysis of the available database has demon-
strated that the majority of large amplitude signals are due to power
line (and harmonic) contamination instead of being of solely physio-
logical nature. Since averaging is a very robust estimation procedure
to power line influence, artifact rejection routines directly applied to
raw EEG will reject many useful epochs. In this context it is essential
to improve the EEG quality prior to averaging.

The rejection threshold usually is described as a voltage value
or a fraction (percentage) of the full-scale range. A review of the
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Fig. 7. Number of MLAEP (out of a 46 total) with rejected epochs, for patient 2,
according to the artifact rejection level (defined as a percentage of the full-scale
range): (a) conventional canceller; (b) proposed algorithm.

Fig. 8. Rejected epochs in the most contaminated MLAEP of a patient under surgery:
(a) conventional canceller and (b) proposed algorithm.

literature shows that this threshold is in between ± 30�V (30%) and
± 60�V (60%) for a full-scale of ± 100�V (100%) [23–25].

Fig. 7 presents the number of MLAEPs with rejected epochs for
patient 2 during surgery, along a 92.37min interval and a 1000
epoch averaging for each MLAEP. A comparison between results ob-
tained from the signal processed by the conventional canceller and
by the proposed algorithm demonstrates the significant decrease of
the number of MLAEPs with rejected epochs for thresholds between
30% and 70%. For thresholds below 30% both algorithms present ap-
proximately the same number of rejections due to the background
EEG. Fig. 8 presents comparative results between the two techniques
for epochs belonging to the most contaminated MLAEP of patient 2.
Here the influence of higher harmonics over the rejection routine
when using small thresholds can be seen. For thresholds below 50%
the epochs obtained from the conventional canceller were entirely
rejected (the number of rejected epochs is over 10% of the epochs
available to evaluate one MLAEP) while the new algorithm rejected
less than 2% of the total number of epochs providing a high quality
MLAEP.

Fig. 9 shows the number of rejected epochs for the entire en-
semble for both the conventional and new canceller as a function of
the artifact rejection level. The use of the new canceller permits the
attainment of high quality signals without rejecting useful epochs
(threshold less than 40%).

Fig. 9. Rejected epochs of a patient during surgery for all 46 obtained MLAEPs: (a)
conventional canceller and (b) proposed algorithm.

Fig. 10. Time evolution of the: (a) EEG signal; (b) EEG signal processed by the
conventional canceller; (c) EEG signal processed by the proposed algorithm. A scaled
version of the averaged MLAEP (1000 epochs, scale factor of 7) is synchronously
superimposed with all plots (smoothed line).

Artifact rejection procedures are essential in order to obtain high
quality MLAEPs, once high level background activity and ocular
movements can severely deteriorate the estimated MLAEPs. The use
of the new canceller permits a better decision as to whether epochs
should be rejected or accepted during MLAEP extraction procedures,
resulting in a large number of valid epochs and consequent high
quality signals.

Fig. 10 presents a comparison between a high SIR single MLAEP
and its ensemble average over 1000 epochs. Three cases are pre-
sented: raw data, data processed by the conventional canceller and
data processed by the proposed algorithm. Fig. 10c shows the use
of the new canceller approximates the shapes of single and aver-
aged MLAEPs. This example demonstrates the capability of the new
algorithm in minimizing the influence of power line harmonic inter-
ference and its potential use in association with single trial MLAEP
techniques [26].
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Possible effects on changes in amplitude and latency of MLAEPs
due to the application of the proposed canceller were investigated in
signals from five surgical patients. Visual inspection of MLAEPS from
all patients demonstrated no clinical significant differences between
processed and nonprocessed signals.

The complete proposed canceller requires only 27 sums, 31 mul-
tiplications and 1 division (corresponding to 16 multiplications [27])
in the case of the three harmonics presented case (60, 120, 180
and 240Hz).3 Such computational cost is compatible with some
commercial 16-bit microcontrollers (Texas MSP430F2XXX, Freescale
68HC16Z1). Extra references and channels could be obtained by the
use of digital signal controllers with multiply-accumulate hardware
units [28] (Freescale MC56F80XX, Texas TMS320F28XX). The unitary
cost of these processors is less than U$20 in very small quantities.

7. Conclusion

This paper presented a very effective and low computational cost
strategy for power line harmonic suppression in biomedical signals.
The power line reference is obtained from analog to digital conver-
sion while higher harmonics are mathematically estimated through
trigonometric relations. These samples and estimates make up a set
of reference signals to be processed by a multichannel LMS adaptive
canceller. Performance comparison with the conventional adaptive
canceller in ECG and EEG demonstrates the new algorithm can im-
prove the signal to interference ratio of such bioelectric signals due
to suppression of power line and harmonic interference. The pro-
posed canceller is also very useful as a pre-processing step prior
to artifact rejection routines in evoked potentials averaging. Use in
intraoperative monitoring resulted in high quality MLAEP signals,
permitting continuous monitoring, even during intense harmonic in-
terference periods. Laboratory and surgery data, obtained with a low
cost biomedical acquisition system demonstrate the positive perfor-
mance of the proposed strategy. This technique is of special inter-
est for low cost high quality acquisition systems that incorporate a
conventional adaptive canceller, as no hardware modifications are
needed.
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Appendix A.

A simple estimator for the peak value of a discrete sinusoid
x(n) = A(n) sin(�n+�)—where � = 2�f/fsamp = 2�/P, A(n) is the peak
value (assumed slowly varying), P (integer) is amultiple of the period,
f is the sinusoid frequency (in this case 60Hz or 50Hz), fsamp is the

3 Matlab routines, real data and application examples are freely available at
http://eel.ufsc.br/∼costa/Research/HarmonicCanceller.html.

sampling frequency and � is the phase—can be built using estimates
of the mean absolute value, given by

	(n) = 1
P

P−1∑
k=0

|x(n − k)| (A.1)

Using trigonometric relations in (A.1) and disregarding phase in-
formation (since P is a multiple of the sinusoid period) (A.1) turns to

	(n) = |A(n)|
P

⎡
⎣j

P/2−1∑
k=0

e−j�k − j
P/2−1∑
k=0

ej�k

⎤
⎦ (A.2)

Eq. (A.2) can be presented in closed form as

	(n) = |A(n)|
P

[
j
1 − e−j(�P/2)

1 − e−j�
− j

1 − ej(�P/2)

1 − ej�

]
(A.3)

Since ej�P/2 = −1, after some manipulation (A.3) results in

	(n) = 2|A(n)|
P

sin(�)
1 − cos(�)

(A.4)

Using (A.1) in (A.4) then k(n) is defined as

k(n) = 1
|A(n)| =

2
sin(�)

(1 − cos(�))∑P−1
k=0 |x(n − k)|

(A.5)

Taking for granted P> 30 then sin(�)/(1–cos(�)) � P/�, result-
ing in Eq. (7). Since k(n) is an approximation to the instantaneous
sinusoid peak value, then x(n)/k(n) has approximately a unitary peak
amplitude. This strategy avoids squaring the data x(n–k).
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