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a  b  s  t  r  a  c  t

This  work  presents  a  simple  and  accurate  method  to estimate  the  noise  autocorrelation  function  in  audi-
tory  evoked  potential  applications.  It basically  consists  in  applying  a  conventional  correlation  function
estimator  over  the contaminated  evoked  potential  signal  processed  by  a comb  filter.  The  main  feature  of
the proposed  technique  is  the possibility  of obtaining  information  on  large  correlation  lags  without  the
need  of extra  time  intervals,  minimizing  the  estimation  time.  A  theoretical  analysis  is provided  showing
that,  under  certain  but  achievable  conditions,  the  correlation  function  of  the  processed  signal approxi-
mates  the  real  noise  correlation  function.  Simulation  results  and  an  example  with  a single-trial  evoked
potential  estimation  technique  illustrate  the  expected  performance.  The  proposed  method  is  of  special
interest  to  either  single  or small  number  of  trials  evoked  potential  estimation  techniques  in anaesthesia
monitoring  applications.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Evoked potentials (EPs) are electrophysiological responses of
the nervous system to sensory stimuli. The interest in these biopo-
tentials resides in their importance to the clinical diagnosis of
several pathologies and in the study of brain functions. EPs are
usually measured through surface electrodes positioned at par-
ticular locations in the scalp. This measurement setup leads to
contamination of the signal of interest by background spontaneous
electroencephalographic activity, myoelectric signals and exter-
nal interferences. As a consequence, the raw acquired EP usually
presents a very low signal to noise ratio (SNR) typically ranging
from −10 dB down to −30 dB [1].  Thus, it is important to improve
the EP quality before clinical interpretation. Unfortunately, classi-
cal filtering techniques do not apply – since the EP and noise share
the same spectral bandwidth – while weighted ensemble averag-
ing techniques can incur in biasing [2].  Hence, the conventional
ensemble averaging (EA) is still the most used technique to estimate
EPs.

Conventional EA consists of a synchronous averaging of single
sweeps time-locked to external stimuli. This technique is based on
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the assumptions that EP is a periodic deterministic signal1 and that
contamination noise is a zero mean uncorrelated signal.

Important practical applications are characterized by progres-
sive and significant variations of the EP waveform along the time.
This is the case of anaesthetic monitoring, where amplitude and
latency changes of the midlatency auditory evoked potentials
(MLAEP) present a direct relation with anaesthetic depth [3–5].
Therefore, important information may  be lost when large amounts
of data are averaged. Thus, it is of interest to obtain EP estimates
with the smallest number of sweeps.

In general, MLAEP extraction requires averaging of hundreds of
sweeps to obtain a suitable estimate, due to the MLAEP very small
SNR nature. This approach results in long estimation times, which is
especially troublesome in real-time monitoring applications. How-
ever, during anesthetized states MLAEP SNR increases significantly
[4] and small or even single-trial estimation techniques could be
used during unconscious states to provide faster and more accurate
predictions.

Many techniques have been proposed to enhance the quality of
EP estimations obtained by a small or a single number of sweeps.
Examples are the Wiener filtering of small-averaged EPs [6],

1 Recent studies have supported the stochastic nature of EPs, even in normal
individuals under rest (due to fatigue, habituation or level of attention), that are
associated with different states of brain function [11]. In this work, these EP varia-
tions have been neglected since it is assumed that they have no clinical interest in
the  application at issue and the magnitude and latency variations are minimal when
compared to those of interest.

1746-8094/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
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subspace techniques [7] and particle filtering [8].  The main draw-
back of such techniques is the required knowledge of the signal and
noise statistics.

In practice, EP statistical information is obtained from small-
averaged signals, while noise information is obtained from
measurements before stimuli [8–11]. This noise estimation
method, however, requires a large time between stimuli. There are
two reasons for that: a needed period for EP late potential vanishing
and (most important) the availability of a sufficient number of EP-
free samples for accurate estimation. This is especially troublesome
when large correlation lags must be estimated. A simple and accu-
rate noise statistics estimator was proposed in [12]. Unfortunately,
it demands long intervals between stimuli for proper estimation
of large correlation lags (in order to minimize biasing due to noise
autocorrelation). In addition, this estimator has been proved unbi-
ased only in the unreal condition of uncorrelated noise. As a result,
it provides good results only for small correlation lags. Neverthe-
less, many EP estimation techniques that require knowledge of the
noise autocorrelation function have been addressed by scientific
literature in recent years [7–14]. An extensive search in the main
scientific sources shows that no other methods for estimating the
noise autocorrelation function in EP applications have been pub-
lished since [12], resulting in the need of large inter-stimuli periods
or restricting the application to odd-ball tests,2 such as in P100 and
P300 estimation, where long EP-free periods are available. Given
the difficulties in estimating the noise correlation, even some recent
works have arbitrarily assumed, in performance tests, the unreal
condition of uncorrelated background noise [15], losing the oppor-
tunity of taking advantage of signal information. As a result, this
subject is an open state-of-the-art issue in present-day literature
in the area.

This work presents a simple and reliable method for estimating
the autocorrelation function of the background noise in audi-
tory evoked potential applications. The proposed method does not
require extra intervals between stimuli, resulting in accurate and
fast estimates even for large correlation lags. This work is particu-
larly relevant in situations of medium to high SNR as in unconscious
states during anaesthetic monitoring.

2. Comb filtering

Assuming the scalp measurement in a given period of time can
be described as x(n) = s(n) + v(n), where x(n) is the sampled mea-
surement at time n, s(n) is the EP, and v(n) is the background noise
(mainly characterized by EEG), we define the filtered measurement
y(n) as:

y(n) = 1√
2

[x(n) − x(n − �)] (1)

Eq. (1) implements a comb filter with notches at frequencies
Fsamp/�; where Fsamp is the sampling frequency, � = �NE, NE is the
total number of samples of each epoch, and � is a positive inte-
ger. We  can interpret it as the synchronous subtraction of two
�-separated sweeps.

Assuming EP variations can be disregarded in a time-window
of � consecutive sweeps, the filtered measurement signal is an EP-
free signal whose properties are inherited from the background
EEG and by the characteristics of the comb filter. The next sections
will show that, under certain conditions, an estimate of the EEG
background autocorrelation function can be obtained directly from

2 The odd-ball test consists in obtaining EPs while an individual is asked to
perform a specific task when an infrequent stimulus (target) is applied between
non-relevant stimuli (standard).

an estimate of the filtered measurement autocorrelation function,
independently of the characteristics of the comb filter.

3. Estimation of the noise correlation function

Two different approaches can be used for obtaining estimates
of the autocorrelation function of a stochastic signal [16]: (a) para-
metric solutions based on time series models and (b) the average of
lagged-products of the observations. Besides their great accuracy,
methods based on the first approach can require large computa-
tional resources, being time-consuming. The most known member
of the second family is the sample autocorrelation function and
its variations. Its main appeal is its computational complexity that
permits real-time estimations. Its main drawback is that it is a
non-stationary stochastic process with mean and variance that are
functions of the lag distance (a biased solution). However, useful
estimates can be obtained when the number of samples is large
(greater than 50) and the maximum lag is less than one-quarter of
the available data points [17]. The sample autocorrelation function
of the measurement signal is defined as [18]:

F̂y(k) = 1
N

N−k∑
i=1

y(i)y(i + k) (2)

where y(n) is defined in (1) and assumed ergodic; 0 ≤ k < P; P is
the maximum lag of interest, N is the number of available sam-
ples and P < N/4. Eq. (2) is evaluated at each sweep using N past
samples of the filtered measurement A strictly unbiased solution
can be obtained if the scale factor in the denominator of Eq. (2) is
changed to (N − k). However, the estimated function for all lags k is
not assuredly positive-definite.

4. Theoretical analysis

The proposed noise autocorrelation function estimator is
obtained by filtering the EP signal by Eq. (1) and by evaluating
Eq. (2).  In this section, it is showed that such procedure results
in an unbiased estimation of the true noise autocorrelation func-
tion, whose variance decreases to zero as the number of available
samples (N) tends to infinity, i.e. the larger the number of available
samples, the better the estimate.

Assuming a time interval �·Tsamp (where Tsamp = 1/Fsamp is the
sampling period) in which the EP does not present significant vari-
ations (s(n) ∼= s(n − �)), the filtered measurement y(n) is free from
EP influence and Eq. (1) turns to:

y(n) = 1√
2

[v(n) − v(n − �)]  (3)

Using (3) in (2) and taking the expected value (defined as E{·}) we
obtain:

E{F̂y(k)} = 1
2N

N−k∑
i=1

E{v(i)v(i + k)} − 1
2N

N−k∑
i=1

E{v(i)v(i + k − �)}

− 1
2N

N−k∑
i=1

E{v(i − �)v(i + k)} + 1
2N

N−k∑
i=1

E{v(i − �)v(i + k − �)} (4)

Defining the noise autocorrelation function as:

Fv(b − a) ≡ E{v(i − a)v(i − b)} (5)

and using (5) in (4) it results in:

E{F̂y(k)} = N − k

N
Fv(k) − N − k

2N
Fv(k − �)  − N − k

2N
Fv(k + �)  (6)



Author's personal copy

544 M.H. Costa / Biomedical Signal Processing and Control 7 (2012) 542– 548

Considering � > 2kmax, where kmax is the noise correlation length
(a number that results in Fv(kmax + 1) < ε where ε is very small, so
as Fv(kmax + 1) can be assumed zero), then

E{F̂y(k)} ∼= N − k

N
Fv(k) (7)

Assuming large N and P < N/4, where 0 ≤ k < P, then

E{F̂y(k)} ∼= Fv(k) (8)

Eq. (8) shows that Eqs. (1) and (2),  under some specific but achiev-
able practical conditions, provide an unbiased estimator of the
noise autocorrelation function. Better accuracy can be obtained
from the strength of the used assumptions.

4.1. Analysis of the estimator’s consistency

A first order statistical analysis of an estimator cannot guarantee
consistency3 and a second order analysis is needed to demonstrate
the usefulness of the estimator in practical applications [12]. The
variance (defined as var{·}) of the estimator is given by [18]:

var{F̂y(k)} = E{[F̂y(k) − E{F̂y(k)}]2}
= E{F̂2

y (k)} − E{F̂y(k)}2 (9)

Squaring (2),  taking its expected value, assuming Gaussian noise
and using (7) in (9),  after some arithmetic, it comes to

var{F̂y(k)} = (N − k)2

4N2
[F2

v (k + �)  + F2
v (k − �)]

+ (N − k)2

2N2
Fv(k − �)Fv(k + �)

− (N − k)2

N2
Fv(k)[Fv(k + �)  + Fv(k − �)]

+ 1
N2

N−k∑
i=1

N−k∑
j=1

F2
v (j − i)

+ 1
N2

N−k∑
i=1

N−k∑
j=1

Fv(j − i + k)Fv(j − i − k)

+ 1
2N2

N−k∑
i=1

N−k∑
j=1

Fv(j − i − �)Fv(j − i + �)

+ 1
4N2

N−k∑
i=1

N−k∑
j=1

[F2
v (j − i + �)  + F2

v (j − i − �)]

− 1
N2

N−k∑
i=1

N−k∑
j=1

Fv(j − i)[Fv(j − i + �)  + Fv(j − i − �)]

+ 1
4N2

N−k∑
i=1

N−k∑
j=1

Fv(j − i + k − �)[Fv(j − i − k − �)

+Fv(j − i − k + �)]

+ 1
4N2

N−k∑
i=1

N−k∑
j=1

Fv(j − i + k + �)[Fv(j − i − k − �)

+Fv(j − i − k + �)]

− 1
2N2

N−k∑
i=1

N−k∑
j=1

Fv(j − i + k) [Fv(j − i − k + �)  + Fv(j − i − k − �)]

− 1
2N2

N−k∑
i=1

N−k∑
j=1

Fv(j − i − k)[Fv(j − i − k + �)  + Fv(j − i − k − �)]

(10)

3 A statistical estimator is defined as being consistent when its variance tends to
zero as the number of samples tends to infinity. This characteristic guarantees that
a  lower variance of the estimate will be obtained with the increase of the number
of  available samples.

Assuming the noise autocorrelation function is finite (Fv(k) < ε for
−kmax > k > kmax, ε → 0) and � > 2kmax, the three first terms in (10)
are zero. The remaining terms consist of a sum of a maximum of
N·kmax values divided by N2. This way, variance tends to zero as the
number of available samples tends to infinity:

lim
N→∞

var{F̂y(k)} → 0 (11)

The statistical assumptions necessary to demonstrate the validity of
the proposed estimator are no more restrictive than those assumed
for the EA technique (EP deterministic and non-correlated EEG).

5. Real-time implementation

Based on the theoretical results presented in previous sections,
it can be inferred that, assured the needed assumptions, different
approaches of time-average lagged-products of the observations
can be used to estimate the noise autocorrelation function from
the filtered measurement signal. A low-cost real-time estimation
method can be implemented by a vector accumulator and a delay-
line (y(n) = [ y(n) y(n − 1) . . . y(n − M + 1) ]T ) as:

f̂y = 1
N − M

N−1∑
n=M

y(n)y(n) (12)

where f̂y =
[

F̂y(0) F̂y(1) . . . F̂y(M − 1)
]T

is a vector containing
the lagged products of the estimated autocorrelation function,4

N is the number of available samples in the time interval where
the autocorrelation sample is assumed to be evaluated, and y(n) is
updated for n = 0 to N. The real-time algorithm, given by Eqs. (1)
and (12), presents a computational complexity of (M + 1) multiply-
accumulate operations per sample, requiring (� + 2 M)  memory
positions. Eq. (12) can also be recursively implemented. In case of
a continuous estimation of the autocorrelation function, a compu-
tationally efficient alternative is

f̂y(n) = ˛f̂y(n − 1) + (1 − ˛)y(n)y(n) (13)

where (1 − ˛) is a small constant.5 Eq. (13) presents a computational
complexity of (2M + 1) multiply-accumulate operations per sample.

6. Simulation results

In order to verify the performance of the proposed method, it
was  initially compared with the method presented in [12] in two
controlled environments, consisting of: (1) stationary noise added
to a known replicated real EP and (2) nonstationary noise added
to a simulated variable EP (simulating EEG and EP variations due
to an anaesthetic procedure). The results obtained by Eqs. (2) and
(12) and Eq. (21) from [12] for different numbers of epochs (an
epoch contains T samples) were compared with the true noise auto-
correlation function (derived from the AR model) following three
figures of merit to be later defined. Finally, the proposed method
was  applied in conjunction with a single-trial subspace technique
in order to demonstrate its usefulness in practical EP estimation
applications without intervals between stimuli.

In all simulations the estimated correlation function and the EP
epoch had the same length (M = NE) of 601 samples (0,12s). This
length permits detection of brainstem auditory evoked potentials
and perfect analysis of midlatency waves. The delay parameter �
was  set to 2. Monte Carlo experiments indicate that values of � up

4 For a detailed analysis and properties of (12) refer to [19] (Chapter 5.2).
5 Eq. (13) is a first order discrete low-pass filter with a time constant given by

�  = −Tamos/ln(˛) seconds [23]. The time constant defines the time required for the
influence of the input to vanish to 37% of its initial value.



Author's personal copy

M.H. Costa / Biomedical Signal Processing and Control 7 (2012) 542– 548 545

to 10 can be used without noticeable loss in accuracy. All real data
(evoked potential and electroencephalographic signals) presented
in this work were obtained from a previously recorded database
and here were off-line processed in Matlab.

Example 1. Estimation of the noise autocorrelation function assum-
ing deterministic EP and stationary noise: the known evoked
potential (Fig. 1(i)) was obtained by averaging 1000 sweeps of a
real auditory evoked potential signal acquired from a normal sub-
ject under rest [20]. The simulated noise was computer-generated
from a 16th order autoregressive (AR) model whose coefficients
were estimated via Burg’s method from real EEG sampled at 5 kHz
(specialized literature indicates that an order of 5 is sufficient for
a 5% accuracy and an order of 10 or higher can lead to optimal
accuracy [21]). The resulting AR model impulse response magni-
tude is reduced to less than 1% of the first sample magnitude after
88 ms  (440 samples). The EP signal and simulated noise were added
and the SNR was determined at −23 dB. Fifty realisations were per-
formed. Results are presented in Fig. 1.

Example 2. Estimation of the noise autocorrelation function assum-
ing nonstationary EP and nonstationary noise: the nonstationary
EPs were mathematically designed according to the procedure
described in [4].  It resulted in a sequence of artificial midlatency
potentials with a rate of change compatible with pharmacokinetic
time constants of some usual anaesthetic agents. The synthetic sig-
nal is described by a damped sinusoid (s(n) = 100dn sin(2�fn + �))
with parameters adapted from [4] to the sampling frequency of
5 kHz. These parameters were linearly changed over time to sim-
ulate the pre (d = 0.998; f = 0.0046; � = −0.001) and full (d = 0.9926;
f = 0.0034; � = −2.02) anaesthesia stages. The SNR varied from
−20 dB (conscious state) to 10 dB (anaesthetized state) using the
same AR model described in Example 1, but with a nonstationary
power (linear variation). Such SNR variation is characteristic of the
induction process during anaesthesia. The resulting signal mimics
a time between the conscious state to the full anaesthetized one
of about 4 min  (Fig. 2(i)). Fifty realisations were performed. Results
are presented in Fig. 2.

Example 3. Application with a single-trial EP estimation technique:
in order to demonstrate the usefulness of the proposed method
in a practical application, it was used in conjunction with the
subspace method for single-trial estimation of evoked potentials
presented in [7].  This method uses second-order statistics to form
a prior information model for the evoked potentials. It was  origi-
nally applied to the P300 test, which supplies long periods without
evoked potentials and, consequently, allows the estimation of noise
second-order statistics directly from the unprocessed signal. The
authors of [7] suggested the use of parametric methods (that need
large computational capacity) or the prior assumption of a white
noise statistics (identity correlation matrix) in case large variations
in the statistics of the background noise are obtained (which occurs
when the inter-stimulus period is not large enough). However, such
assumption is far-fetched and its use may  significantly impair the
estimation technique performance. As a result, the method pre-
sented in [7] has a limited application, once even other kinds of
large amplitude evoked potentials, such as steady-state evoked
potentials, will require large inter-stimuli periods in order to esti-
mate the needed statistics accurately. In this example, with the help
of the proposed technique, the applicability of [7] was  extended to
the case of auditory evoked potentials without inter-stimuli peri-
ods. Here, unlike Examples 1 and 2, we evaluated the difference
between the clean EP (the real deterministic evoked potential pre-
sented in Fig. 1(i)) and its estimation from the noisy EP (the clean
EP contaminated by the simulated noise described in Example 1)
by using: (a) the unprocessed noisy EP; (b) the noisy EP processed
by the technique presented in [7] assuming the noise is white; and

(c) the noisy EP processed by the technique presented in [7] com-
bined with the proposed method in which the noise second order
statistics were continuously estimated through Eq. (12) using only
2 epochs (present and past). Simulation was performed with 1000
epochs and SNR ranged from −25 dB to 5 dB with steps of 2 dB.

Three figures of merit were used to evaluate the performance
of the methods under comparison: (a) estimation error (ER); (b)
relative error (RE); and (c) spectral distortion (SD).

The ER is a standard quality measure defined by the following
equation:

ER = 1
R

R∑
r=1

∑M−1
k=0 [F̄v(k) − (F̂yr (k))/(F̂yr (0))]

2∑M−1
k=0 F̄2

v (k)
(14)

where R is the number of the available stochastic realisations of
the contamination noise, M is the length of the autocorrelation
function, F̄v(k) = Fv(k)/Fv(0) is the kth lag of the normalized theo-
retical noise autocorrelation function and F̂yr (k) is the kth lag of the
estimated autocorrelation function obtained in the rth realisation.
It measures the mean square difference between the theoretical
autocorrelation function and the estimated one for a given number
of sweeps. In this example, noise power estimation is not under
consideration since there is a variety of simple estimators that can
result in accurate estimations.

The relative error is defined as:

REl(k) =
∣∣∣∣∣ F̄v(k) − 1

R

∑R
r=1(F̂yl,r

(k))/(F̂yl,r
(0))

F̄v(k)

∣∣∣∣∣ (15)

where R is the number of the available stochastic realisations of
the contamination noise, F̂yl,r

(k) is the kth lag of the estimated
autocorrelation function obtained with the first l sweeps in the
rth realisation and |·| is the absolute value. It permits to verify the
individual relative errors (of each autocorrelation lag) for a given
number of sweeps.

Finally, spectral distortion is defined as the cepstral mean
square error between the estimated and theoretical autocorrela-
tion functions. It is used to evaluate the coherent structure of the
autocorrelation function instead of its individual points [22]. The
spectral distortion is defined as [16]:

SD = 1
R

R∑
r=1

1
4�

M−1∑
ω=0

{ln[h(ω)] − ln[ĥr(ω)]}2
(16)

where R is the number of the available stochastic realisa-
tions of the contamination noise, h(ω) is the ωth element
of vector h = |F{fv/Fv(0)}|; F{·} is the fast Fourier transform
(FFT) of its argument; Fv(0) is the first element of vector fv =[

Fv(0) Fv(1) . . . Fv(M − 1)
]T

that contains the true elements

of the noise autocorrelation function; ĥr(ω) is the ωth element
of vector ĥr = |F{f̂yr/F̂yr(0)}|; F̂yr(0) is the first element of vector

f̂yr = [ F̂yr(0) F̂yr(1) . . . F̂yr(M − 1) ]
T

that contains the lags of
the estimated autocorrelation function obtained in the rth reali-
sation.

For Example 3, the autocorrelation function and its estimate
described in the definition of (14–16) were substituted by the
clean EP and its estimate, respectively. The results are presented
in Figs. 1–3.

7.  Discussion

Examples 1 and 2 provided means of demonstrating the validity
and performance of the proposed method related to [12].

Fig. 1(ii) shows the ER index as a function of the number of
sweeps for the estimator proposed in [12] and estimators described
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Fig. 1. Example 1: SNR = −23 dB. (i) Real evoked potential; (ii) estimation errors; (iii) relative errors; (iv) cepstral estimation errors. Estimator presented in: (a) Ref. [12]
(dashed line); (b) Eq. (12) (dotted line); and (c) Eq. (2) (solid line).

by Eqs. (2) and (12) in the stationary environment described in
Example 1. It is possible to verify that Eqs. (2) and (12) lead to
very similar results for a number of epochs larger than 5 and that
both produce better estimates than the method presented in [12].
The ER performance gain of the proposed technique over that pre-
sented in [12] slowly reduces with the number of available trials.
Calculations of the RE index for Example 1 are shown in Fig. 1(iii).
This figure indicates that the large lags of the autocorrelation func-
tion are the main source of error for both [12] and the proposed
technique. However, it is clearly seen that the proposed technique
improves the estimate of large autocorrelation lags, resulting in
smaller RE indexes.

Fig. 1(iv) presents the most important result for Example 1. It
shows that the proposed technique presents a very high SD gain
performance, when compared to [12], and such gain does not van-
ish with the increase of the number of available sweeps. The SD
takes into account the relationship amongst autocorrelation lags
(by using the ratio of spectral components), an important char-
acteristic needed to preserve statistical information and spectral
content of the signal under analysis [16]. Albeit both methods result
in accurate estimations of the first correlation lags, the small SD val-
ues indicate that the proposed method produces better estimates
of the whole structure of the correlation function [16]. This is espe-
cially important when using noise statistics for designing filtering
or extraction procedures.

Results for the nonstationary environment described in
Example 2 are presented in Fig. 2. They corroborate and expand
the conclusions obtained by the stationary case in Example 1.
The proposed method results in better estimates of the individual
lags of the autocorrelation function. These estimates are especially
improved in case of larger lags. The spectral distortion index shows
the proposed method is able to produce better estimates of the

structure of the autocorrelation function even in the event of non-
stationary signals. This gain in SD performance does not vanish with
the increase of sweeps. From these results, it is evidenced that fast
variations on the EP and EEG, such as those related to a real anaes-
thetic procedure, do not significantly impact on the performance of
the proposed method once only small periods of time are needed
to obtain the estimates.

In Example 3, a single-trial estimation technique was  applied
to auditory evoked potentials in conjunction with the proposed
method, assuming no availability of inter-stimuli periods. In such
case, the authors in [7] suggest using an identity covariance matrix.
However, it is well known that background noise in EP applications
is far from being uncorrelated. As a result, the performance of the
technique presented in [7] will not be optimal. In order to verify
the technical contribution of our proposal, the performance of [7]
was  tested in two different situations: (a) the arbitrary (and erro-
neous) assumption of uncorrelated noise (as suggested by [7]) and
(b) continuous estimation of the noise second order statistics by the
proposed method. Fig. 3 presents the SD index for unprocessed sig-
nals, signals processed by [7] with the use of an identity covariance
matrix, and processed by [7] with a covariance matrix obtained
through Eq. (12). In this Example, the SD index is evaluated using
the noise-free evoked potential as h and the estimated/noisy EP at
epoch r as ĥr . Clearly, the proposed technique provides improved
results. For SNRs higher than 0 dB, the subspace method degrades
the quality of EP once any kind of processing will distort important
EP frequency components.

In recent years, many different kinds of estimation tech-
niques to improve the quality of evoked potential signals have
been developed, such as subspace methods, particle filtering and
independent component analysis [7–14]. Although second-order
statistics knowledge is required by most of these techniques, the
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Fig. 2. Example 2: −20 dB ≤ SNR ≤ 10 dB. (i) Simulated evoked potential for conscious state (solid line) and full anaesthetized state (dotted line); (ii) estimation errors; (iii)
relative errors; (iv) cepstral estimation errors. Estimator presented in: (a) Ref. [12] (dashed line); (b) Eq. (12) (dotted line); and (c) Eq. (2) (solid line). The evoked potential
was  continuously varied from the conscious to the full anesthetized shape (see [4]) along the 100 epochs.

method through which these statistics can be obtained is not cov-
ered in the original articles, resulting in a very restricted set of
applications characterized by large inter-stimuli periods (essen-
tially odd-ball tests). The proposed technique allows obtaining very
precise estimations of the noise autocorrelation function without
the need of inter-stimuli periods and with a low computational
cost. This characteristic is very useful and can extend the list of

Fig. 3. Example 3: Spectral distortion of real single-trial auditory evoked poten-
tials [20]. Simulation of 1000 epochs. (a) Raw EP (solid line); (b) EP processed by
[7]  assuming white signals (dotted line); and (c) EP processed by [7] using the
autocorrelation function estimated by (12) (dashed line).

applications of new estimation techniques, such as in [11] and [13]
to steady-state EPs and auditory evoked potentials during anaes-
thetic states.

8. Conclusions

This work presented a new method for estimating the noise
autocorrelation function in auditory evoked potential applica-
tions. Theoretical analysis demonstrated the needed conditions for
obtaining unbiased and consistent estimates using time-averages
of lagged-products of the observations. Simulation results have
shown a performance gain over a technique previously presented
in literature. The joint application of the proposed technique with
a subspace single-trial EP estimation technique demonstrated the
possibility of lowering spectral distortion of the estimates without
the need of any inter-stimuli periods. This technique is specially
recommended for joint use with evoked potential estimation tech-
niques for a single or a small number of trials which require long
correlation lags and small estimation times.
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